Aircraft Flight Manual

Doc. No. 2006/044 4th Edition – Rev. 11 August 26 2019

TECNAM P2006T

MANUFACTURER: COSTRUZIONI AERONAUTICHE **TECNAM** S.r.l. AIRCRAFT MODEL: **P2006T** EASA TYPE CERTIFICATE NO: A .185 (DATED 2009, JUNE 5^{TH})

SERIAL NUMBER:

BUILD YEAR:

REGISTRATION MARKINGS:

This Aircraft Flight Manual is approved by European Aviation Safety Agency (EASA).

This Manual contains information required by the FAA to be furnished to the pilot for operation in the U.S.A. plus information supplied by the manufacturer. It is approved by EASA on behalf of the FAA per FAR 21.29.

This Manual must be carried in the airplane at all times. The airplane has to be operated in compliance with procedures and limitations contained herein.

Costruzioni Aeronautiche **TECNAM** srl Via Maiorise CAPUA (CE) – Italy Tel. +39 (0) 823.62.01.34 WEB: <u>www.tecnam.com</u>

SECTION 0

INDEX

1.	RECORD OF REVISIONS
2.	LIST OF EFFECTIVE PAGES7
3.	FOREWORD10
4.	SECTIONS LIST11

Aircraft Flight Manual

INDEX

1. RECORD OF REVISIONS

Any revision to the present Manual, except actual weighing data, is recorded: a Record of Revisions is provided at the front of this manual and the operator is advised to make sure that the record is kept up-to-date.

The Manual issue is identified by Edition and Revision codes reported on each page, lower right side.

The revision code is numerical and consists of the number "0"; subsequent revisions are identified by the change of the code from "0" to "1" for the first revision to the basic publication, "2" for the second one, etc.

Should be necessary to completely reissue a publication for contents and format changes, the Edition code will change to the next number ("2" for the second edition, "3" for the third edition etc).

Additions, deletions and revisions to existing text will be identified by a revision bar (black line) in the left-hand margin of the page, adjacent to the change.

When technical changes cause expansion or deletion of text which results in unchanged text appearing on a different page, a revision bar will be placed in the right-hand margin adjacent to the page number of all affected pages providing no other revision bar appears on the page.

These pages will be updated to the current regular revision date.

NOTE: It is the responsibility of the owner to maintain this handbook in a current status when it is being used for operational purposes.

COSTRUZIONI AERONAUTICHE

Rev	Revised	Description of	Tecn	am Appro	oval	EASA Approval or Under DOA
KC V	page	Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	M. Oliva	M. Oliva	
	0-4,8	Amended ROR and LOEP				Approved under the au-
1	6-12	Amended Equipment List	D. Ronca	M. Oliva	M. Oliva	thority of DOA, ref. EASA.21J.335
	9-1,2,5,7	Amended Supplement List				(MOD2006/270.160429)
	0-4,8	Amended ROR and LOEP				
2	4-3,4,18,19	Amended General recommendations and "Prior to Takeoff" procedure	D. Ronca	M. Oliva	M. Oliva M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/290.170316)
	5-16	Amended Cruise performances		Wi. Oliva		
	9-1,2,4,5,7	Amended Supplement List Index				
	0-1,4,7	Amended cover page, ROR and LOEP	A. Sabino	C. Caruso M		Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/315.170901)
3	6-11, 12, 13	Amended Equipment List			M. Oliva	
	9-2,3,8	Amended Supplement List, Modi- fied Introduction,				
	0-1,4,7, 12	Amended cover page, ROR and LOEP. Blank page added.	A. Sabino	C. Caruso M. Oliv		Approved under the au- thority of DOA, ref. EASA.21J.335
4	4-3,11,16, 17,19,20,25	Amended "Pre-flight", "Engine starting", "Prior to takeoff" and "Parking/Shut down" checklists			M. Oliva	
	5-23	Blank page removed				(MOD2006/318.171205)
	6-11, 12, 13	Amended Equipment List				
	0-1,4,7,12	Amended cover pages, ROR and LOEP. Blank page added.	A. Sabino			Approved under the au- thority of DOA, ref. EASA.21J.335
	2-11	Amended caution on supplemental oxygen use.			C. Caruso M. Oliva	
5	2-12	Integration of info formerly con- tained in Supp. A27, G16, G18.		C. Caruso		
	4-19,22	Amended procedures.				(MOD2006/325.180112)
	6-11,12,13	Amended equipment list.				
	9-all	Amended Supplement List.				

RECORD OF REVISIONS

Rev	Revised page	Description of Revision	Tecnam Approval		EASA Approval or Under DOA Privileges	
	0-1, 5, 7	Amended. Blank page added.		D. Ronca		Approved under the au-
	1-6	Typo in stabilator deflections values corrected.				
	2-12	Reference to Oil Temp. Indicator MOD corrected				
6	2-20	Warning amended	A. Sabino		M. Oliva	thority of DOA, ref. EASA.21J.335
	4-22, 24, 25	Normal procedures amended				(MOD2006/345.181120)
	6-13	Eq. list amended				
	9-2, 7, 8	Supplement G23 added.				
	0-1, 5, 7	Amended cover pages, ROR and LOEP.	A. Sabino		M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/357.190226)
7	6-11, 6-13	Amended equipment list		D. Ronca		
	9-2, 9-7, 9-8	Amended Supplements List.				
8	0-1, 5, 7	Amended cover pages, ROR and LOEP.	A. Sabino	D. Ronca	M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/359.190404)
Û	9-all pages	Supplements list layout changed				
	0-1, 5, 7	Amended cover page, ROR and LOEP.	G. Valentino	D. Ronca M. Oliv	M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335
9	6-11	Amended Equipment List.				
	9-3	Amended Supplements List.				(MOD2006/362.190417)
	0-1, 5, 7	Amended cover page, ROR and LOEP.		D. Ronca	M. Oliva	Approved under the au- thority of DOA,
10	3-1, 2, 22	Added electrical pitch trim failure				
10	6-5,6,13	Amended weighing form and equipment List.	A. Sabino			ref. EASA.21J.335 (MOD2006/368.190719)
	9-4	Amended Supplements List.				
	0-1,5,7	Cover pages, ROR and LOEP updated	A. Glorioso (OJT) G. Valentino	D. Ronca M. Oliva	M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335
11	3-22	Electrical pitch trim control failure procedures updated				
	9-3	Supplements List updated			(MOD2006/375.190826)	

RECORD OF REVISIONS

2. LIST OF EFFECTIVE PAGES

The List of Effective Pages (LOEP), applicable to manuals of every operator, lists all the basic AFM pages: each manual could contain either basic pages or one variant of these pages when the pages of some Supplements are embodied.

Should the Supplements be embodied in accordance with approved instructions, make reference to the LOEP addressed on the Supplements themselves.

Ed 1 May 25, 2009

- Ed 2 March 29, 2010
- Ed 3 December 22, 2011
- Ed 4 July 25, 2015

Section	Pages	Revision
Section 0	2, 3, 5, 6, 8 thru 11	Rev 0
	4, 12	Rev 5
	1, 5, 7	Rev 11
Section 1	1 thru 5, 7 thru 32	Rev 0
	6	Rev 6
Section 2	1 thru 10, 13 thru 32	Rev 0
	11	Rev 5
	12, 20	Rev 6
Section 3	1, 2	Rev 10
	3 thru 21, 23 thru 58	Rev 0
	22	Rev 11
Section 4	1, 2, 5 thru 10, 12 thru 15, 18, 21, 23, 26 thru 30	Rev 0
	4	Rev 2
	3, 11, 16, 17, 20	Rev 4
	19	Rev 5
	22, 24, 25	Rev 6
Section 5	1 thru 15,17 thru 22	Rev 0
	16	Rev 2
Section 6	1 thru 4, 7 thru 10, 14	Rev 0
	5, 6, 13	Rev 10
	12	Rev 5
	11	Rev 9
Section 7	1 thru 44	Rev 0
Section 8	1 thru 10	Rev 0
Section 9	1 thru 2	Rev 8
	3	Rev 11
	4	Rev 10
Supplements LOEP:	make reference to the Supplements Cov	ver Pages

4th Edition - Rev. 11

Aircraft Flight Manual

LIST OF EFFECTIVE PAGES

Page 0 - 8

3. FOREWORD

COSTRUZIONI AERONAUTICHE TECNAM

Tecnam **P2006T** is a twin-engine four-seat aircraft with high cantilevered wing and tricycle retractable landing gear.

Section 1 supplies general information and it contains definitions, symbols explanations, acronyms and terminology used.

Before using the airplane, you are recommended to read carefully this manual: a deep knowledge of airplane features and limitations will allow you for operating the airplane safely.

For further information, please contact:

COSTRUZIONI AERONAUTICHE **TECNAM** s.r.l.

Via MAIORISE

CAPUA (CE) - ITALY

4. SECTIONS LIST

General	Section 1 (a non-approved Chapter)
Limitations	Section 2 - EASA Approved Chapter
Emergency Procedures	Section 3 (a non-approved Chapter)
Normal Procedures	Section 4 (a non-approved Chapter)
Performances	Section 5 (a non-approved Chapter)
Weight and Balance	Section 6 (a non-approved Chapter)
Airframe and Systems description	Section 7 (a non-approved Chapter)
Airplane Care and Maintenance	Section 8 (a non-approved Chapter)
Supplements	Section 9 (*)

(*) EASA approved parts, if any, are reported on the supplements

Aircraft Flight Manual

SECTIONS LIST

SECTION 1 - GENERAL

INDEX

1.	Introduction	.3
2.	Three-view and dimensions	.4
3.	Control Surfaces Travel Limits	.6
4.	Engine	.6
	Propeller	
	Governor	
	Fuel	
	Lubrication	
	Cooling	
	Maximum weights	
	Standard weights	
	Specific loadings	
13.		
	Unit conversion chart	
	Litres / US gallons conversion chart	

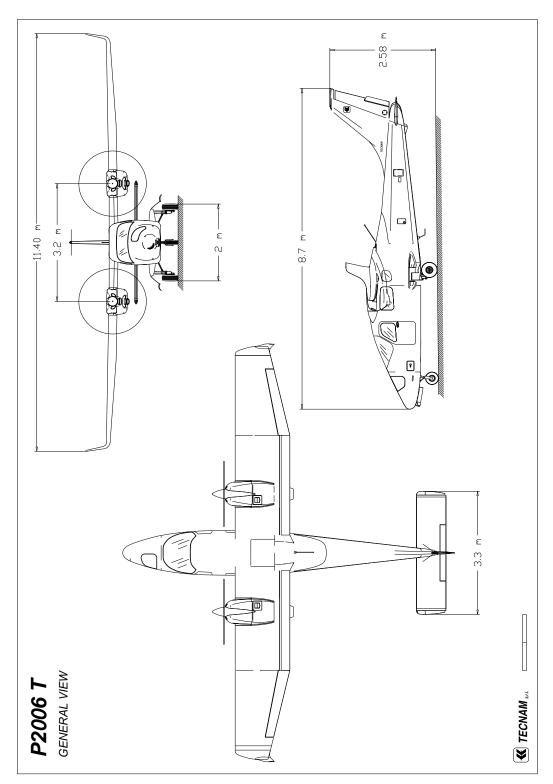
1. INTRODUCTION

The Aircraft Flight Manual has been implemented to provide the owners with information for a safe and efficient use of the aircraft TECNAM P2006T.

Warning - Caution - Note

Following definitions apply to warnings, cautions and notes used in the Aircraft Flight Manual.

The non-observation of the corresponding procedure can lead, as immediate effect, to a significant reduction of the flight safety.



The non-observation of the corresponding procedure can lead to an equipment damage which leads to a reduction of the flight safety in a short or longer time interval.

Draws the attention to a procedure not directly related to safety of flight.

INTRODUCTION

2. THREE-VIEW AND DIMENSIONS

Figure 1 – General views

Section 1 – General

4th Edition, Rev 0

THREE-VIEW AND DIMENSIONS

Dimensions

Overall dimensions		
Wingspan	11,4 m	37,4 ft
Length	8,7 m	28,5 ft
Overall height	2,58 m	8,46 ft
Wing		
Wing surface	14,76 m ²	158,9 ft ²
Mean Geometric Chord	1,295 m	4,25 ft
Dihedral	1°	
Aspect ratio	8,80	
<u>Main Landing Gear</u>		
Track		2.0 m
Wheelbase		2.9 m
Tire		6.00-6
Wheel rim assembly (Clevela	nd)	P/N 40-59A
Nose Landing Gear		
Tire		5.00 - 5
Wheel rim assembly (Clevela	nd)	P/N 40-77C

Section 1 – General

4th Edition, Rev 0

THREE-VIEW AND DIMENSIONS

3. CONTROL SURFACES TRAVEL LIMITS

Ailerons	Up 20° Down 17 ° $(\pm 2^\circ)$
Stabilator (refer to Trailing Edge)	Up 15° Down 4° (± 2°)
Stabilator trim tab (refer to Trailing Edge)	Up 2°; Down 19° (± 2°)
Rudder	RH 26° LH 26° (± 2°)
Rudder trim tab	RH 20° LH 20° (± 2°)
Flaps	0°; 40° (- 2°)

4. ENGINE

5.

Manufacturer	Bombardier-Rotax GmbH
Model	912 S3
Certification basis	FAR 33 - Amendment 15
Type Certificate	EASA TCDS no. E.121 dated 1 April 2008
Engine type	4 cylinders horizontally opposed with 1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated re- duction gear box with torsional shock ab- sorber and overload clutch.
Maximum power (at declared rpm)	73.5 kW (98.6hp) @ 5800 rpm -5 minutes maximum.
	69.0 kW (92.5hp) @ 5500 rpm (continu- ous)
PROPELLER	
Manufacturer	MT Propeller
Type Certificate	LBA 32.130/086 (MTV-21 series)
Model	MTV-21-A-C-F/CF178-05
Blades/hub	2 wood/composite blades – aluminum hub
Diameter	1780 mm (no reduction allowed)
Туре	Variable pitch - hydraulically controlled

Section 1 – General

4th Edition, Rev 6

6. GOVERNOR

Manufacturer	Mt Propeller
Model	P-875-12
Туре	Hydraulic

7. FUEL

8.

Approved fuel:

MOGAS ASTM D4814

MOGAS EN 228 Super/Super plus (min. RON 95)

AVGAS 100LL (ASTM D910)

(see also Section 2)

Fuel tanksTwo integrated tanks (one in each
wing) fitted with drainable sump
and drain valveCapacity of each wing tan100 litres (26,42 US gallons)Tanks overall capacity200 litres (52,8 US gallons)Overall usable fuel194.4 litres (51,35 US gallons)Overall unusable fuel5.6 litres (1,48 US gallons)LUBRICATION

Lubrication systemForced type with external reservoirOilUse only oil with API classification "SG"
or higher. For additional info, refer to "Ro-
tax Operators Manual" – last issue -, "Op-
erating Media" Section.Oil capacityMax. 3.0 litres – min. 2.0 litres (per

Max. 3.0 litres – min. 2.0 litres (per tank)

Section 1 – General

9. COOLING

Cooling system	Ram-air cooled cylinders, liquid cooled cylinder heads (closed and pressurized circuit)
Coolant liquid	Certified for Water/Coolant mixture.
	Make reference to "Rotax Operators Manual" – last issue
Overall circuit capacity	1410 cm ³

10. WEIGHTS

See Section 2.

11. STANDARD WEIGHTS

Empty Weight: see weighing record on Section 6

12. SPECIFIC LOADINGS

	MTOW 1180 kg (2601 lb)	MTOW 1230 kg (2712 lb)
Wing Loading	80 kg/m ² (16,37 lb/sqft)	83 kg/m ² (17,1 lb/sqft)
Power Loading	6.0 kg/hp (13,26 lb/hp)	6.28 kg/hp (13,84 lb/hp)

<u>NOTE</u>. Reference is made to both MTOW: 1180 kg and 1230 kg (if Supplement A19 or G10 - Increased MTOW @1230 KG - is applicable).

Section 1 – General

4th Edition, Rev 0

13. ACRONYMS AND TERMINOLOGY

KCAS	<u>Calibrated Airspeed</u> is the indicated airspeed expressed in knots, corrected taking into account the errors related to the instrument itself and its installation.
KIAS	<u>Indicated Airspeed</u> is the speed shown on the airspeed indicator and it is expressed in knots.
KTAS	<u>True Airspeed</u> is the KCAS airspeed corrected taking into ac- count altitude and temperature.
VA	<u>Design Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement.
V_{FE}	Maximum Flap Extended speed is the highest speed permissible with flaps extended.
V _{LO}	<u>Maximum Landing Gear Operating speed</u> is the maximum speed allowed to retract or to extend the landing gear.
V_{LE}	Maximum Landing Gear Extended speed is the maximum speed allowed with the landing gear extended.
V _{MC}	Minimum control speed: is the minimum speed necessary to en- sure an efficient aircraft control in case of one engine inopera- tive.
V _{NO}	<u>Maximum Structural Cruising Speed</u> is the speed that should not be exceeded, except in smooth air and only with caution.
V _{NE}	<u>Never Exceed Speed</u> is the speed limit that may not be exceeded at any time.
Vo	<u>Operating Manoeuvring speed</u> is the speed above the which it is not allowed to make full or abrupt control movement
Vs	Stall Speed.
V_{S0}	Stall Speed in landing configuration (flaps and landing gear extended).
V _{S1}	Stall speed in the given flap and landing gear configuration.
V _{SSE}	<u>Recommended safe simulated OEI speed</u> is the minimum speed at which simulated OEI training operation should be executed.
V _X	<u>Best Angle-of-Climb Speed</u> is the speed which allows best ramp climb performances.
V _Y	<u>Best Rate-of-Climb Speed</u> is the speed which allows the best gain in altitude over a given time.
V _R	<u>Rotation speed</u> : is the speed at which the aircraft rotates about the pitch axis during takeoff
V _{YSE}	Best Rate-of-Climb speed in case of one engine inoperative.

4th Edition, Rev 0

Meteorological terminology

ISA	International Standard Atmosphere: is the air atmospheric standard condition at sea level, at 15° C ($59^{\circ}F$) and at 1013.25 hPa ($29.92inHg$).				
QFE	<u>Official atmospheric pressure at airport level</u> : it indicates the air- craft absolute altitude with respect to the official airport level.				
QNH	<u>Theoretical atmospheric pressure at sea level</u> : is the atmospheric pressure reported at the medium sea level, through the standard air pressure-altitude relationship, starting from the airport QFE.				
OAT	<u>Outside Air Temperature</u> is the air static temperature expressed in degrees Celsius (°C).				
Ts	<u>Standard Temperature</u> is 15° C at sea level pressure altitude and decreased by 2° C for each 1000 ft of altitude.				
H _P	<u>Pressure Altitude</u> is the altitude read from an altimeter when the barometric subscale has been set to 1013 mb.				

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

Aircraft performance and flight planning terminology

Crosswind Velocity	is the velocity of the crosswind component for the which adequate control of the air- plane during takeoff and landing is assured.
Usable fuel	is the fuel available for flight planning.
Unusable fuel	is the quantity of fuel that cannot be safely used in flight.
G	is the acceleration of gravity.
TOR	is the takeoff distance measured from actual start to wheel liftoff point.
TOD	is total takeoff distance measured from start to 15m obstacle clearing.
GR	is the distance measured during landing from actual touchdown to stop point.
LD	is the distance measured during landing, from 15m obstacle clearing to actual stop.
S/R	is the specific range, that is the distance (in nautical miles) which can be expected at a specific power setting and/or flight configu- ration per kilogram of fuel used.

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

Weight and balance terminology

Datum	"Reference datum" is an imaginary vertical plane from which all horizontal distances are measured for balance purposes.		
Arm	is the horizontal distance of an item meas- ured from the reference datum.		
Moment	is the product of the weight of an item mul- tiplied by its arm.		
<i>C.G</i> .	<u>Center of Gravity</u> is the point at which the airplane, or equipment, would balance if suspended. Its distance from the reference datum is found by dividing the total moment by the total weight of the aircraft.		
Standard Empty Weight	is the weight of the aircraft with engine flu- ids and oil at operating levels.		
Basic Empty Weight	is the standard empty weight to which it is added the optional equipment weight.		
Useful Load	is the difference between maximum takeoff weight and the basic empty weight.		
Maximum Takeoff Weight	is the maximum weight approved to perform the takeoff.		
Maximum Landing Weight	is the maximum weight approved for the landing touchdown (for <i>P2006T</i> it is equivalent to the Maximum Takeoff Weight).		

Section 1 – General

4th Edition, Rev 0

ACRONYMS AND TERMINOLOGYACRONYMS AND TERMINOLOGY

14. UNIT CONVERSION CHART

MOLTIPLYING		BY 🗲	YIELDS	
TEMPERATURE				
Fahrenheit	[°F]	$\frac{5}{9} \cdot (F-32)$	Celsius	[°C]
Celsius	[°C]	$\frac{5}{9} \cdot (F - 32)$ $\left(\frac{9}{5} \cdot C\right) + 32$	Fahrenheit	[°F]
Forces				
Kilograms	[kg]	2.205	Pounds	[lbs]
Pounds	[lbs]	0.4536	Kilograms	[kg]
Speed				
Meters per second	[m/s]	196.86	Feet per minute	[ft/min]
Feet per minute	[ft/min]	0.00508	Meters per second	[m/s]
Knots	[kts]	1.853	Kilometres / hour	[km/h]
Kilometres / hour	[km/h]	0.5396	Knots	[kts]
Pressure				
Atmosphere	[atm]	14.7	Pounds / sq. in	[psi]
Pounds / sq. in	[psi]	0.068	Atmosphere	[atm]
LENGTH				
Kilometres	[km]	0.5396	Nautical miles	[nm]
Nautical miles	[nm]	1.853	Kilometres	[km]
Meters	[m]	3.281	Feet	[ft]
Feet	[ft]	0.3048	Meters	[m]
Centimetres	[cm]	0.3937	Inches	[in]
Inches	[in]	2.540	Centimetres	[cm]
VOLUME				
Litres	[1]	0.2642	U.S. Gallons	[US Gal]
U.S. Gallons	[US Gal]	3.785	Litres	[1]
AREA				
Square meters	[m ²]	10.76	Square feet	[sq ft]
Square feet	[sq ft]	0.0929	Square meters	[m ²]

UNIT CONVERSION CHART

15. LITRES / US GALLONS CONVERSION CHART

Litres	US Gallons
5	1.3
10	2.6
15	4.0
20	5.3
25	6.6
30	7.9
35	9.2
40	10.6
45	11.9
50	13.2
60	15.9
70	18.5
80	21.1
90	23.8
100	26.4
110	29.1
120	31.7
130	34.3
140	37.7
150	39.6
160	42.3
170	44.9
180	47.6
190	50.2
200	52.8

US Gallons	Litres
1	3.8
2	7.6
3	11.4
4	15.1
6	22.7
8	30.3
10	37.9
12	45.4
14	53.0
16	60.6
18	68.1
20	75.7
22	83.3
24	90.9
26	98.4
28	106.0
30	113.6
32	121.1
34	128.7
36	136.3
38	143.8
40	151.4
45	170.3
50	189.3
55	208.2

4th Edition, Rev 0

COSTRUZIONA AERONANTICHE P2006T - Aircraft Flight Manual Page 2 - 1

SECTION 2 – LIMITATIONS

INDEX

1.	Introduction	3
2.	Speed limitations	5
3.	Airspeed indicator markings	7
4.	Powerplant limitations	9
5.	Lubricant	10
6.	Coolant liquid	10
7.	Propeller	10
8.	Governor	10
9.	Maximum operating altitude	11
10.	Ambient temperature	11
11.	Powerplant instruments markings	12
12.	Other instruments markings	12
13.	Warnings, cautions and advisories lights	13
14.	Weights	15
15.	Center of gravity range	17
16.	Approved maneuvers	19
17.	Maneuvers load factor limits	19
18.	Flight crew	19
19.	Flight conditions	20
20.	Fuel	20
21.	Limitations placards	21
21.1	1. Speed limitations	21
21.2	2. Operating limitations	22
21.3	3. Inflight engine restart	23
21.4	4. Baggage compartment capacity	23
21.5	5. Engine oil level	24
21.6	5. Fuel type	24
21.7	7. Landing Gear Hydraulic System	25
21.8	8. Rear seats	26
21.9	9. Other placards	27
22.	Kinds of Operations Equipment List	29

1. INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of P2006T aircraft, its engines and standard systems and equipment.

This AFM Section is EASA approved.

Section 2 – Limitations

2. SPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

SPEED		KIAS	KCAS	REMARKS	
V _{NE}	Never exceed speed		167	168	Do not exceed this speed in any operation.
V _{NO}	Maximum Structural Cruising Speed		135	133	Do not exceed this speed except in smooth air, and only with caution.
V _A	Design Manoeuvring speed		118	117	Do not make full or abrupt control movement above
v _o	Operating Manoeuvring speed				this speed, because under certain conditions the air- craft may be overstressed by full control movement.
V _{LE}	Maximum Landing Gear ex- tended speed		93	92	Do not exceed this speed with the landing gear ex- tended.
V _{LO}	Maximum Landing Gear op- erating speed		93	92	Do not exceed this speed when operating the landing gear.
V _{FE}	Maximum flaps	FULL	93	92	Do not exceed this speed
	extended speed	Т.О.	119	117	for indicated flaps setting.
V _{MC}	Aircraft minimum control speed with one engine inoper- ative		62	62	Do not reduce speed below this value in event of one engine inoperative condi- tion.

3. AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White arc	53-93	Lower limit is V_{SO} , upper limit is the maximum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green arc	66-135	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	80	Best rate-of-climb speed with one engine in- operative at sea level.
Yellow arc	135-167	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	167	Maximum speed for all operations.

4. **POWERPLANT LIMITATIONS**

Following table reports the operating limitations for both engines installed: ENGINE MANUFACTURER: Bombardier Rotax GmbH. ENGINE MODEL: 912 S3

MAXIMUM POWER:

	Max Power kW (<i>hp</i>)	Max rpm. Prop. rpm <i>(engine)</i>	Time max. (minutes)
Max. T.O.	73.5 (98.6)	2388 (5800)	5
Max. Cont.	69 (92.5)	2265 (5500)	-

Temperatures:

Max CHT*	135° C
Max CT	120° C
Min/Max Oil	50° C / 130° C
Oil normal operating range (approx.)	90° C / 110° C

* applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195)

Oil Pressure:

Minimum	0.8 Bar / 12psi	(below 1400 rpm prop)
Normal	2 – 5 Bar / 29-73psi	(above 1400 rpm prop)
Maximum	7 Bar / 102 psi	(above 1400 rpm prop)

Engine starting: allowable temperature range

OAT Min	-25° C
OAT Max	$+50^{\circ} \mathrm{C}$

In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

POWERPLANT LIMITATIONS

Fuel pressure:

Minimum2.2 psi (0.15 Bar)Maximum5.8 psi (0.40 Bar) or 7.26 psi* (0.5 Bar)*only applicable for fuel pump part no. 893110 or 893114

5. LUBRICANT

Use only oil with API classification **"SG"** or higher. For additional info, refer to "Rotax Operators Manual" – last issue -, "Operating Media" Section.

6. COOLANT LIQUID

Refer to "Rotax Operators Manual" - last issue -, "Operating Media" Section.

7. PROPELLER

MANUFACTURER:	MT Propeller
MODEL:	MTV-21-A-C-F-/CF178-05
TYPE:	wood/composite 2-blade, variable pitch hydraulically con- trolled and fully featherable
DIAMETER:	1780 mm (no reduction is permitted)

8. GOVERNOR

MANUFACTURER:	MT Propeller
MODEL:	P-875-12
OPERATION:	Hydraulically controlled (oil pressure to reduce the pitch)

9. MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 14000 ft (4260 m) MSL.

Flight crew is required to use supplemental oxygen according to applicable Air Operation Rules.

10. Ambient temperature

Ambient temperature: from -25° C to $+50^{\circ}$ C.

Flight in expected and/or known icing conditions is forbidden.

11. POWERPLANT INSTRUMENTS MARKINGS

Powerplant instrument markings and their colour code significance are shown below:

Instrum	MENT	RED LINE Minimum limit	GREEN ARC Normal operating	YELLOW ARC Caution	RED LINE Maximum limit
Propeller	rpm		580 - 2265	2265 - 2388	2388
Oil temp.	°C	50	90 - 110	50 – 90 110-130	130
			50-130 ⁽¹⁾	(2)	
СТ	°C		50-120		120
CHT ⁽³⁾	°C		50 - 135		135
Oil pressure	bar	0.8	2 - 5	0.8 - 2 5 - 7 ⁽⁴⁾	7
Fuel press.	psi	2.2	2.2 - 5.8 or 7.2 ⁽⁵⁾		5.8 or 7.2 ⁽³⁾
Fuel Q.ty	litres	0(6)			

12. OTHER INSTRUMENTS MARKINGS

INSTRUMENT	RED LINE	GREEN ARC	YELLOW ARC	RED LINE
	Minimum limit	Normal operating	Caution	Maximum limit
Voltmeter	10,5 Volt	12 - 14 Volt		

If MOD2006/212 is embodied, markings are unchanged so refer to the basic AFM for information.

1 Applicable for aircraft with MOD2006/280 embodied.

2 Applicable for aircraft with MOD2006/280 embodied.

- 3 Applicable for Engines up to serial no. 4924543(included) and repaired engine which doesn't change the cylinder head n°3 with new one (part no. 413195).
- 4 In event of cold starting operation, it is permitted a maximum oil pressure of 7 bar for a short period.

5 Only applicable for fuel pump part no. 893110 or 893114.

6 "0" indication shows the unusable fuel quantity (2,8 litres for each fuel tank).

Section 2 – Limitations

POWERPLANT INSTRUMENTS MARKINGS

13. WARNINGS, CAUTIONS AND ADVISORIES LIGHTS

Following table addresses the warning, caution and advisory lights installed (unless differently specified) on the annunciator panel:

Warnings (RED)	Cause
LH OVERVOLT	LH electric system overvoltage
RH OVERVOLT	RH electric system overvoltage
MAIN DOOR OPEN ALERT	Main door open and/or unlocked
REAR DOOR OPEN ALERT	Rear door open and/or unlocked
LH LOW COOLANT	Left engine - coolant liquid low level
RH LOW COOLANT	Right engine - coolant liquid low level
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION (warning light installed near the landing gear control lever)	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached.
Cautions (Amber)	Cause
LH GENERATOR	LH generator failure
RH GENERATOR	RH generator failure
EXT POWER	External electrical supply connected
PITOT HEAT	Pitot heating system failure/not activated
GEAR PUMP ON	LG pump electrically supplied
Advisories (Green)	Indication
LH FUEL PUMP	Left engine - electrical fuel pump ON
RH FUEL PUMP	Right engine - electrical fuel pump ON
PITOT HEAT	Pitot heating system ON
LG Down & Locked (3 advisory lights, one for each leg, in- stalled near the landing gear control lev- er)	Landing gear extended and locked

14. WEIGHTS

Condition	Weight	
Maximum takeoff weight	1180 kg	2601 lb
Maximum landing weight	1180 kg	2601 lb
Maximum zero wing fuel weight	1145 kg	2524 lb

Refer to Para. 21.4 of this AFM Section for baggage loading limitations.

15. CENTER OF GRAVITY RANGE

Datum	Vertical plane tangent to the wing leading edge (the aircraft must be levelled in the longitudinal plane)
Levelling	Refer to the seat track supporting beams (see procedure in Section 6)
Forward limit	0.221 m (16.5% MAC) aft of datum for all weights
Aft limit	0.415 m (31% MAC) aft of datum for all weights

The pilot is responsible for ensuring that the airplane is properly loaded. Refer to Section 6 for appropriate instructions.

16. APPROVED MANEUVERS

The aircraft is certified in normal category in accordance with EASA CS-23 regulation.

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls (except whip stalls)
- Lazy eights
- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including spins and turns with angle of bank of more than 60° , are not approved for such a category. In addition, stall with one engine inoperative is forbidden.

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (118 KIAS, Manoeuvring Speed).

17. MANEUVERS LOAD FACTOR LIMITS

Maneuver load factors limits are as follows:PositiveNegative+ 3.8 g- 1.78 gManeuver load factors limits with flaps extended are as follows:PositiveNegative+ 2 g0 g

18. FLIGHT CREW

Minimum crew: Maximum number of occupants: 1 pilot 4 people (including the pilot)

19. FLIGHT CONDITIONS

The aircraft can be equipped for following flight operations (make reference to Para. 22 concerning the equipment list required on board to allow them):

- VFR Day and Night
- IFR Day and Night including IMC

Flight in expected and/or known icing conditions, in proximity of storms or severe turbulence is forbidden.

Additional equipment can be required to fulfil national or specific operational requirements. The owner is responsible for fulfilling these requirements.

Equipment list is addressed in Section 6.

20. FUEL

2 TANKS:	100 litres each one (26,42 US gallons)
MAXIMUM CAPACITY:	200 litres (52,8 US gallons)
MAXIMUM USABLE FUEL:	194.4 litres (51,35 US gallons)
APPROVED FUEL:	MOGAS ASTM D4814
	MOGAS EN 228 Super/Super plus (min. RON 95)

AVGAS 100 LL (ASTM D910)

Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual which prescribes dedicated checks due to the prolonged use of Avgas.

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

> Manouvering speed $V_0 = 118 \text{ KIAS}$ Maximum L.G. op. speed $V_{LO}/V_{LE} = 93 \text{ KIAS}$

21.2. **OPERATING LIMITATIONS**

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

21.3. INFLIGHT ENGINE RESTART

The inflight engine restart procedure is reported on a placard (shown below) installed on the central console.

INFLIGHT ENGINE RESTART

1) Fuel Pump ON & normal engine starting

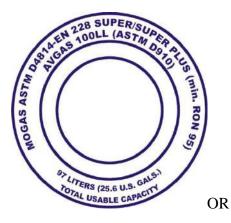
21.4. BAGGAGE COMPARTMENT CAPACITY

The placard shown below, and installed on the baggage compartment (vertical pan-

el), concerns the baggage compartment load limitations herein reported:

- Maximum allowable load: 80kg/176lb
- Maximum intensity of loading: 0.9 kg/dm² 19 lbs/sqft

21.5. ENGINE OIL LEVEL


On the engine nacelle, in correspondence of the engine oil reservoir access door, it is located the following placard addressing the limitations concerning the oil level, the oil volume and the oil type.

USE ONLY OIL WITH API CLASSIFICATION SG OR HIGHER

21.6. FUEL TYPE

In correspondence of each fuel tank filler cap, it is located the following placard reporting the approved fuel type and the tank usable fuel.

MOGAS ASTM D4814-EN 228 SUPER/SUPER PLUS (min. RON 95) AVGAS 100LL (ASTM D910)

97 LITERS (25.6 U.S. GALS.) TOTAL USABLE CAPACITY

21.7. LANDING GEAR HYDRAULIC SYSTEM

The placard shown below, and located on the tail cone, concerns the allowed low pressure limit for the landing gear emergency accumulator.

The low pressure limit is **20 bar**.

If during pre-flight inspection the value is below **20 bar**, the system must be recharged by means of the override button (see Section 7, Para. 9).

LOW PRESSURE LIMIT

20 BAR

EASA Approved

4th Edition, Rev. 0

21.8. REAR SEATS

During Taxi, Take OFF, Landing (including Emergency Landing), both rear seats must be kept in the lowest and full aft position.

The following placard is located aside both rear seats.

Rear seats must be kept in lowest and full aft position during Taxi, Take Off, Landing and Emergency Landing

21.9. OTHER PLACARDS

Description	Placard	Place
Smoking ban	NO SMOKING	Instruments panel, right side
Ditching emer- gency exit: opening in- structions	A CONTRACTOR OF A CONTRACTOR O	Ditching emergency exit handle: internal side
Ditching emer- gency exit: opening in- structions	A REAL PROPERTY OF THE REAL PR	Ditching emergency exit handle: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emer- gency exit: external side
Door locking system: by- pass instruc- tions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emer- gency exit: internal side
Main door: exit instructions	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	Main door, internal side
Emergency ex- it label	EMERGENCY EXIT	Emergency exit: inter- nal and external side

Section 2 – Limitations

4th Edition, Rev. 0

LIMITATIONS PLACARDS

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the airspace classification and route to be flown.

4th Edition, Rev. 0

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
Airspeed indicator	•	•	•	•
Altimeter	•	•	•	•
Vertical speed indicator	•	•	•	•
Attitude indicator (electric)	•	•	•	•
Turn coordinator	•	•	•	•
OAT indicator	•	•	•	•
Pitot heating system	•	•	•	•
Directional Gyro (electric)	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch	•	•	•	•
Cabin light		•	•	•
Cockpit lights		-	•	•
Emergency light	-	•	-	•
Volt-Ammeter	•	•	•	-
	•	•	•	•
COMM/NAV/GPS equipment	•	•	•	•
VOR/LOC/GS/GPS CDI	•	•	•	•
LG position and transition lights	•	•	•	•
Transponder	•	•	•	•
Audio Panel/Marker beacon	•	•	•	•
Altitude encoder	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
Annunciator panel	•	•	•	•
2 nd VHF COMM/NAV equipment		•	•	•
2 nd VOR/LOC/GS CDI			•	•
DME			•	•
ADF			•	•
2 nd Airspeed indicator			•	•
2 nd Attitude indicator (electric)			•	•
2 nd Altimeter			•	•
	VFR Day	VFR Night	IFR Day	IFR Night

4th Edition, Rev. 0

SECTION 3 – EMERGENCY PROCEDURES

INI	DEX
1.	Introduction3
1	1. Engine failure during takeoff run 3
2.	Airplane alerts5
	1. Single generator failure / overvoltage5
	2. Both generators failure 6
	3. Both generators overvoltage7
	4. Failed door closure
	5. Pitot heating system failure
	6. Coolant liquid low level
	7. Gear Pump failure
2	8. Engine fire
3.	Engine securing13
4.	Powerplant emergencies14
4	1. Propeller overspeeding
4	2. CHT/CT limit exceedance14
4	3. Oil temperature limit exceedance15
4	4. Oil pressure limits exceedance16
4	5. Low fuel pressure
5.	Other emergencies
5	1. Emergency descent
5	2. Total electrical failure
5	3. Static ports failure 19
5	4. Unintentional flight into icing conditions 20
5	5. Carburettor icing
5	6. Flaps control failure 22
5	7. Electrical pitch trim control failure 22
6.	One engine inoperative procedures23
6	1 Characteristic airspeeds with one engine inoperative
6	2 Inflight engine restart
6	3 Engine failure during takeoff run 26
6	4 Engine failure during climb 28
6	5. Engine failure in flight 29
6	6. One engine inoperative landing 30
7.	Landing gear failures32
7	1. Emergency landing gear extension

7.2.	Complete Gear up or nose gear up landing	33
7.3.	Partial Main LG extension	34
7.4.	Failed retraction	36
	Unintentional landing gear extension	
8. S	moke and fire occurrence	38
8.1	Engine fire on the ground	38
8.2	Engine fire during takeoff run	39
8.3	Engine fire in flight	41
8.4	Electrical smoke in cabin on the ground	41
8.5	Electrical smoke in cabin during flight	42
9. U	nintentional spin recovery	14
10. L	anding emergencies	16
10. 1	Landing without engine power	46
10.2	Landing with Nose landing gear tire deflated	48
	Landing with a known main landing gear tire deflated	
10.4	Landing without brakes	50
11. A	ircraft evacuation	51
12. D	itching	52

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self-study should be done.

Emergency procedures associated with those optional systems and equipment which require handbook supplements are provided in separate Supplements.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

	BEFORE ROTATION: ABORT TAKE OFF		
1. 2.	Throttle Lever Rudder	BOTH IDLE Keep heading control	
3. 4.			

b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

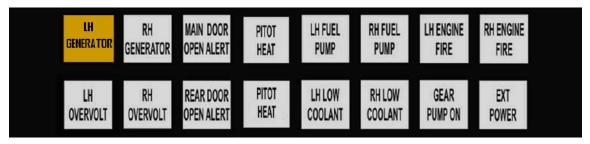
- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

4th Edition, Rev. 0

Section 3 – Emergency procedures

COSTRUZIONA AERONANTICHE P2006T - Aircraft Flight Manual Page 3 - 4


In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured. Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

2. AIRPLANE ALERTS

The annunciator panel, located on the left side instrument panel, contains 16 lights for warnings, cautions and advisories. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
<u>RED:</u>	to indicate emergency conditions

2.1. SINGLE GENERATOR FAILURE / OVERVOLTAGE

In event of LH or RH GENERATOR caution light turned ON, apply following procedure:

1. FIELD LH (or RH)	OFF
2. FIELD LH (or RH)	ON
If the LH (or RH) GENERATO	R caution stays displayed
3. FIELD LH (or RH)	OFF
<i>4.</i> Avionic LH	OFF

5. ADF

NOTE

Switching OFF avionic LH and ADF will permit to shed non essential electrical power.

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

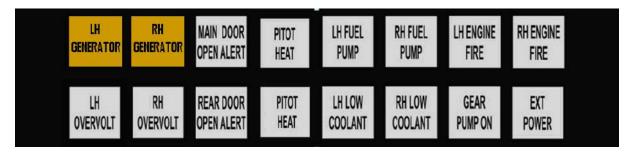
If conditions permit:

NOTE

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH)

OFF


OFF

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

7. Land as soon as practicable

2.2. BOTH GENERATORS FAILURE

In event of both LH and RH GENERATOR caution lights turned ON:

1.	FIELD LH and RH	BOTH OFF
2.	FIELD LH and RH	BOTH ON

If the LH (or RH) GENERATOR caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH GENERATOR cautions stay displayed

FIELD LH and RH
 CROSS BUS LH and RH
 BOTH OFF
 BOTH OFF

If engine starting battery modification is applied

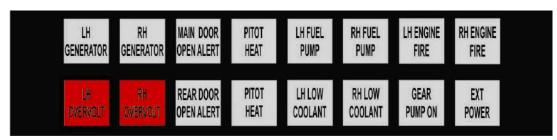
5. EMERG BATT switch

ON

6. Land as soon as practical.

If engine starting battery modification is not applied

5. Land as soon as possible.


Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

NOTE

The battery alone can supply electrical power for at least 30 minutes.

2.3. BOTH GENERATORS OVERVOLTAGE

In event of both LH and RH OVERVOLT warning lights turned ON:

- 1. FIELD LH and RH
- 2. FIELD LH and RHBOTH ON

If the LH (or RH) GENERATOR caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH OVERVOLT warning stay displayed

3.	CROSS BUS LH and RH	BOTH OFF
4.	FIELD LH and RH	BOTH OFF
5.	FIELD LH and RH	BOTH ON

If LH (or RH) OVERVOLT warning stays displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single generator failure / overvoltage drill (Para 2.1)

If both LH and RH OVERVOLT warning stay displayed

6. FIELD LH and RH

BOTH OFF

BOTH OFF

If engine starting battery modification is applied

7. EMERG BATT switch

ON

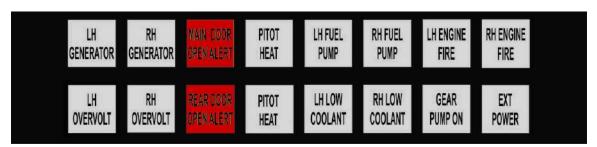
LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	Encoder Altimeter	NAV 2	Stall Warning
		A/P	RH attitude indicator
		A/P Pitch Trim	

8. Land as soon as practical.

If engine starting battery modification is not applied

7. Land as soon as possible.

Equipment will be lost accordingly to the following table:


NOTE

The battery alone can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Section 3 – Emergency procedures

2.4. FAILED DOOR CLOSURE

In case of door opening / unlocking, related MAIN or REAR DOOR ALERT warning light turns ON.

ON THE GROUND

- 1. Passengers and crew seat belts
- 2. Affected door

<u>If door is open</u>

Fasten and tighten

Shut down

Check

Close and check

Verify correctly closed

- 3. Relevant engine
- 4. Affected door

<u>If door is closed</u>

If down in unlocked position

4. Abort mission.

3. Locking device

IN FLIGHT

Passengers and crew seat belts
 Affected door and locked device
 Fasten and tighten Verify correctly closed

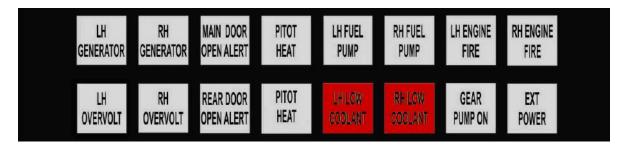
If door is open or locking device is unlocked

3. Land as soon as possible

4th Edition, Rev. 0

2.5. PITOT HEATING SYSTEM FAILURE

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.


If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

- 1. Pitot heat switch *OFF*
- 2. Verify Pitot Heating circuit breaker is IN
- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

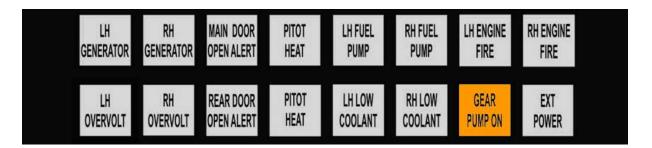
If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

Section 3 – Emergency procedures

2.6. COOLANT LIQUID LOW LEVEL

When the engine coolant liquid level goes under the lower limit, the related LH or RH LOW COOLANT is turned ON. This condition may lead to high CHT/CT. When the warning light turns ON, apply following procedure:

1. Check affected engine CHT/CT


If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

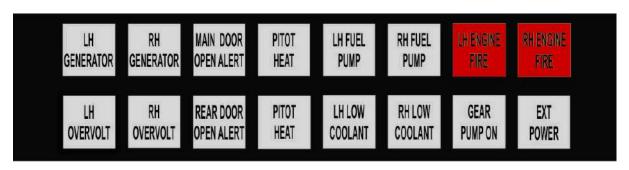
2.7. GEAR PUMP FAILURE

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.


If TRANS light is ON

2. Landing gear is not locked in UP position

NOTE

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

2.8. ENGINE FIRE

In event of engine fire, LH or RH ENGINE FIRE warning light will turn ON. Refer to following procedures:

FIRE ON THE GROUND: FIRE DURING TAKEOFF RUN: FIRE IN FLIGHT: see Para. 8.1 see Para. 8.2 see Para. 8.3

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

1.	Throttle Lever	IDLE
2.	Ignition	BOTH OFF
3.	Propeller Lever	FEATHER
4.	Fuel Selector	OFF
5.	Electrical fuel pump	OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

4. **POWERPLANT EMERGENCIES**

4.1. **PROPELLER OVERSPEEDING**

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

Throttle Lever
 Propeller Lever

3. RPM indicator

REDUCE power to minimum practical REDUCE as practical (<u>not in feathering</u>) CHECK

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible a**pplying *one engine inoperative land-ing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals.

4.2. CHT/CT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

4.3. **OIL TEMPERATURE LIMIT EXCEEDANCE**

If oil temperature exceeds maximum limit (130°C):

1. OIL PRESS CHECK If oil pressure is within limits 2. Affected engine *Reduce power setting to minimum applicable* 3. Affected engine Keep propeller speed higher than 2000 RPM

If oil pressure does not decrease

INCREASE

4. Airspeed

NOTE

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine SECURE (see engine securing procedure on Para. 3)
- 8. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

*Excessive oil pressure drop leads to a high pitch propel*ler configuration with consequent propeller feathering and engine stopping.

4.4. **OIL PRESSURE LIMITS EXCEEDANCE**

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

1. OIL PRESS

CHECK

If oil pressure exceeds upper limit (7 bar)

2. Throttle Lever

first REDUCE affected engine power by 10%

- 3. Propeller Lever Keep low rpm CHECK (verify if within limits)
- 4. OIL PRESS

5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. Affected engine SECURE (see engine securing procedure Para. 3)
- 4. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

4.5. LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

1.	Fuel press	CHECK
2.	Fuel quantity	CHECK
3.	Fuel consumption	MONITOR

If a fuel leakage is deemed likely

4. Land as soon as possible.

If a fuel leakage can be excluded:

- 4. Electrical fuel pump ON
- 5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

5. OTHER EMERGENCIES

5.1. EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLO/VLE

5.2. TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary
2.	Standby attitude indicator switch	ON
3.	MASTER SWITCH	OFF
4.	FIELD LH and RH	BOTH OFF
5.	MASTER SWITCH	ON
6.	FIELD LH and RH	BOTH ON

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. Land as soon as possible applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3. STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- 3. Continue the mission

OFF (hot and cold air) OPEN

Section 3 – Emergency procedures OTHER EMERGENCIES

5.4. UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

- 1. Carburettor heat BOTH ON
- 2. Pitot heat ON
- 3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.
 - Control surfaces *Move continuously to avoid locking*
- 5. Propellers rpm INCREASE to prevent ice build-up on the blades

4.

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

5.5. CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing condition is forbidden.

Therefore, and in order to dispose of full engine take off power, the take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the earlier carburettors are warmed the better the chances not to form ice and avoid engine loss or reduction of power.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating to "ON" will cause engine RPM reduction of about 100 RPM, causing a sensible available engine power decrease.

5.6. FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed

Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para 6 (Stall Speed) and an increased landing distance of about 25%.

- 1. AirspeedKeep over 75 KIAS
- 2. Land as soon as practical on a runway of appropriate length

5.7. ELECTRICAL PITCH TRIM CONTROL FAILURE

a) Trim Runaway: In the event of trim runaway: 1. AP DISC switch (if AP is installed) PRESS and HOLD 2. TRIM DISC switch OFF RELEASE 3. AP DISC switch (if AP is installed) 4. Trim aircraft using trim wheel **b)** Trim Jamming: Should trim control be jammed / inoperative: 1. Pitch trim breaker CHECK If circuit breaker is OUT: 2. Trim aircraft using trim wheel If circuit breaker is IN: 2. TRIM DISC switch OFF 3. Trim aircraft using trim wheel

OTHER EMERGENCIES

6. ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine.

In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13 (One engine rate of climb).

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Spe (KIA	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
Dest rate of align aread $OEL(V_{ij})$	MTOW 1180 kg	MTOW 1230 kg
Best rate-of-climb speed OEI (V_{YSE})	80	84
Best gradient speed OEI (V _{XSE})	79	83

Reference is made to MTOW, 1180 kg and 1230 kg, at Sea Level and ISA condition (if Supplement A19 - Increased MTOW @1230 KG - is applicable).

6.2 **INFLIGHT ENGINE RESTART**

After:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

- Carburettor heat 1.
- Electrical fuel pump 2.
- Fuel quantity indicator 3.
- **Fuel Selector** 4.
- 5. FIELD
- 6. Ignition
- 7. Operating engine Throttle Lever
- **Stopped engine Throttle Lever** 8.
- **Stopped engine Propeller Lever** 9.
- 10. Start push-button inoperative engine
- 11. Propeller Lever inoperative engine
- 12. FIELD
- 13. Engine throttle levers

ON if required ON CHECK CHECK (Crossfeed if required) **OFF** BOTH ON SET as practical **IDLE** FULL FORWARD PUSH SET at desired rpm *ON* (check for positive ammeter) SET as required

If engine restart is unsuccessful

14. EMERG BATT switch

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

16. Affected engine

SECURE (see engine securing procedure *Para. 3*)

17. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

6.3 **ENGINE FAILURE DURING TAKEOFF RUN**

- **Throttle Lever** 1.
- 2. Rudder
- **Brakes** 3.

BOTH IDLE Keep heading control As required

When safely stopped:

- Failed Engine Ignition 4.
- Failed Engine Field 5.

BOTH OFF

- **OFF OFF**
- Failed Engine Electrical fuel pump 6.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 $V_{\rm YSE}$ with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- **Operating engine Throttle Lever** 1.
- **Operating engine Propeller Lever** 2.
- 3. Heading
- Attitude 4.
- **Inoperative engine Propeller Lever** FEATHER 5.
- Landing gear control lever 6.
- 7. Airspeed
- Flaps 8.

FULL POWER

FULL FORWARD Keep control using rudder and ailerons *Reduce as appropriate to keep* airspeed over 62 KIAS UP V_{XSE}/V_{YSE} as required 0•

<u>At safe altitude</u>

- 9. <u>Inoperative engine</u>
- 10. Operative engine Electrical fuel pump Check ON
- 11. Operating engine
- 12. Operating engine Fuel Selector

Confirm and SECURE Check ON Check engine instruments Check correct feeding (crossfeed if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

13. Land as soon as possible

14. One engine inoperative landing procedure. see Para. 6.6

Following:

WARNING

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

6.4 **ENGINE FAILURE DURING CLIMB**

- Autopilot 1.
- Heading 2. Attitude
- 3.

OFF

Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- **Operating engine Propeller Lever** 5.
- Operative engine Electrical fuel pump 6.
- 7. Inoperative engine Propeller Lever
- Inoperative engine 8.

FULL THROTTLE FULL FORWARD Check ON **FEATHER** Confirm and SECURE

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- Land as soon as possible 9.
- 10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

6.5. ENGINE FAILURE IN FLIGHT

- Autopilot 1.
- 2. Heading Attitude

3.

- **OFF**
 - Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS
- **Operating engine** 4.
- Operative engine Electrical fuel pump 5.
- 6. **Operating engine Fuel Selector**

Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- Land as soon as possible 7.
- One engine inoperative landing procedure. see Para. 6.6 8.

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12 (Rate of climb with One Engine Inoperative).

6.6. One engine inoperative landing

Thoroughly evaluate feasibility and plan in advance Single Engine Go-Around capabilities and expected climb gradient should a Missed Approach / balked landing be necessary. Refer to Section 5, Para 13 and 14 (One-engine Rate of Climb at V_{YSE} and V_{XSE})

Autopilot must be kept OFF

- 1. Seat belts
- 2. Landing lights
- 3. Operating engine Fuel Selector
- 4. <u>Inoperative engine</u> Propeller Lever
- 5. <u>Inoperative engine</u>
- 6. Operative engine Electrical fuel pump

When on final leg:

7. Flap

8. Landing gear

9. Approach Airspeed

10. Touchdown speed

Tightly fastened As required Check correct feeding/crossfeed if needed CHECK FEATHERED CHECK SECURED ON

T/O Select DOWN and check three green lights on V_{YSE} 70 KIAS

INTENTIONALLY LEFT BLANK

7. LANDING GEAR FAILURES

7.1. EMERGENCY LANDING GEAR EXTENSION

NOTE

Landing gear extension failure is identified by means of the green lights not illuminated: relevant gear leg may not be fully extended and/or locked.

Light bulb operating status can be verified by pressing the LDG push-to-test button. Additionally, the red light TRANS indicates that one or more legs are moving and the PUMP ON amber light on the annunciator panel indicates the hydraulic gear pump is operating.

1. Airspeed

below applicable VLO/VLE

- 2. Landing gear control lever
- 3. Emergency gear extension access door *REMOVE*
- 4. RH control lever
- 5. Wait at least 20 seconds

DOWN REMOVE ROTATE 90° counterclockwise

Main Landing Gear legs green lights may be turned on, thus indicating effective main gear legs blocked in down position by mere effect of gravity force.

- 6. LH control lever
- 7. Land as soon as practical

ROTATE 180° counterclockwise

The emergency landing gear extension operation takes about 20" sec.

7.2. COMPLETE GEAR UP OR NOSE GEAR UP LANDING

The following procedure applies if Nose Landing Gear is not extended and locked even after emergency extension procedure.

A Nose Landing Gear up leg not down and locked might lead to a hazardous situation, especially on uneven runways.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a complete Landing Gear up or a Nose Landing Gear up position is reported:

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Before ground contact:

6. LH and RH Fuel Selector

- 7. LH and RH Electrical fuel pump
- 8. Ignitions

On touch down:

- 9. Landing attitude
- 10. Touchdown speed
- 11. Aircraft nose

After aircraft stops:

12. FIELD LH and RH

13. MASTER SWITCH

Tightly fastened UP CHECK OFF plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

14. Aircraft Evacuation

carry out if necessary

4th Edition. Rev. 0

Section 3 – Emergency procedures

LANDING GEAR FAILURES

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.3. PARTIAL MAIN LG EXTENSION

The following procedure applies if one or both Main Landing Gear legs are not completely extended and locked even after emergency extension procedure.

A partial gear landing (RH and/or LH leg not down and locked) might turn into a hazardous situation, especially on uneven runways.

If possible try to obtain a symmetric gear extension (e.g. by trying further landing gear retraction) in order to avoid swerving after touchdown. A gear up landing is generally considered safer.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Tightly fastened UP CHECK OFF plan approach with Flap Land

BOTH OFF

BOTH OFF

ALL OFF

If partially extended landing gear is confirmed:

Before ground contact:

- 6. LH and RH Fuel Selector
- 7. LH and RH Electrical fuel pump
- 8. Ignitions

On touch down:

- 9. Align for approach
 10. Touchdown speed
 11. Touchdown
 12. Heading and direction
 on the runway centreline
 as low as 50 KIAS
 on the extended gear only
 maintain applying appropriate aileron and rud-
- Heading and direction der/steering control
 Retracted leg

keep off the ground as long as possible

4th Edition, Rev. 0

Section 3 – Emergency procedures

LANDING GEAR FAILURES

After aircraft stops:

14. FIELD LH and RH

15. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

16. Aircraft Evacuation

carry out

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.4. **FAILED RETRACTION**

- 1. Airspeed
- 2. Landing gear control lever

A Landing Gear lever recycle (further retraction attempt) may result in a final partial Landing Gear Extension, which may then compromise safe landing aircraft capability.

DOWN

3. Landing Gear lights *Check*

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

7.5. UNINTENTIONAL LANDING GEAR EXTENSION

An unwanted landing gear extension, with at least one leg moving downward, may be caused by hydraulic fluid loss and it is signaled by

CAUTION

- significant aerodynamic noise increase;
- light and counteractable nose down pitch moment;
- red TRANS light turned on.
- 1. Airspeed
- 2. Landing gear control lever

Keep below applicable VLO/VLE DOWN Check

Keep below applicable VLO/VLE

3. Landing Gear lights

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

INTENTIONALLY LEFT BLANK

8. SMOKE AND FIRE OCCURRENCE

8.1	ENGINE FIRE ON THE GROUND	
1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	Cabin heat and defrost	OFF
5.	MASTER SWITCH	OFF
6.	Parking Brake	ENGAGED
7.	Aircraft Evacuation	carry out immediately
	or passenger doors are	emergency exit to escape in case pilot blocked, watch for engine hot parts, il spills. Leave aircraft in upwind di-

8.2 ENGINE FIRE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE *Keep heading control As required*

carry out immediately

With aircraft under control

- 4. Fuel Selector
- 5. **Ignitions**
- 6. Electrical fuel pump
- 7. Cabin heat and defrost
- 8. MASTER SWITCH
- 9. Parking Brake
- 10. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

BOTH OFF

BOTH OFF

ENGAGED

ALL OFF

OFF

OFF

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

1.	Operating engine Throttle Lever	FULL POWER
2.	Operating engine Propeller Lever	FULL FORWARD
3.	Heading	Keep control using rudder and ailerons
4.	Attitude	Reduce as appropriate to keep airspeed over 62 KIAS
5.	<u>Fire affected engine</u> Propeller Lever	-
6.	Landing gear control lever	UP
7.	Airspeed	V _{XSE} /V _{YSE} as required
8.	Flaps	0•

4th Edition, Rev. 0

SMOKE E FIRE OCCURRENCE

BOTH OFF

OFF

Confirm and OFF

Confirm and OFF

Confirm and BOTH OFF

At safe altitude

- 9. Cabin heat and defrost
- 10. <u>Fire affected engine</u> Fuel Selector
- 11. <u>Fire affected engine</u> Ignitions
- 12. <u>Fire affected engine</u> Electrical fuel pump
- 13. <u>Fire affected engine</u> FIELD
- 14. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

8.3 ENGINE FIRE IN FLIGHT

- 1. Cabin heat and defrost
- 2. Autopilot
- 3. <u>Fire affected engine</u> Fuel Selector
- 4. <u>Fire affected engine</u> Ignition
- 5. <u>Fire affected engine</u> Throttle Lever
- 6. Fire affected engine Propeller Lever
- 7. <u>Fire affected engine</u> Electrical fuel pump
- 8. Heading
- 9. Attitude
- 10. Fire affected engine Field

11. Cabin ventilation

OFF Confirm and OFF Confirm and BOTH OFF Confirm and FULL FORWARD Confirm and FEATHER

OFF

BOTH OFF

Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS OFF

OPEN

12. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND

- 1. MASTER SWITCH
- 2. Cabin heat and defrost
- 3. **Throttle Lever**
- 4. **Ignitions**
- 5. **Fuel Selector**
- 6. **Parking Brake**
- 7. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

OFF

OFF

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

ELECTRICAL SMOKE IN CABIN DURING FLIGHT	
Cabin ventilation	OPEN
Emergency light	ON
Standby attitude indicator switch	ON
Gain VMC conditions as soon as possible	
case of cockpit fire:	
Fire extinguisher	use toward base of flames
	Cabin ventilation Emergency light Standby attitude indicator switch Gain VMC conditions as soon as possible case of cockpit fire:

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

- 6. FIELD LH and RH
- 7. AVIONICS LH and RH

8. CROSS BUS LH and RH

BOTH OFF BOTH OFF BOTH OFF

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

9. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

MASTER SWITCH
 Land as soon as possible

OFF

When on ground:

11. Aircraft Evacuation

carry out as necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

9. UNINTENTIONAL SPIN RECOVERY

WARNING

Spin behaviour has not been demonstrated since certification process does not required it for this aircraft category.

Intentional spin is forbidden.

Stall with one engine inoperative is forbidden.

Should an unintentional spin occur, the classic recovery manoeuvre is deemed as being the best action to undertake:

Both engines throttles
 Flight Controls
 Rudder

idle centralize fully against rotation until it stops

INTENTIONALLY LEFT BLANK

10. LANDING EMERGENCIES

10.1 LANDING WITHOUT ENGINE POWER

In case of double engine failure both propellers should be feathered to achieve maximum efficiency. Best glide speed is attained with flap UP and equals V_Y for current aircraft mass and air density altitude. Refer to Section 5, Para. "Enroute Rate of Climb".

Normal landing gear extension requires MASTER switch ON, an efficient battery and takes around 20 seconds.

LG selection should be appropriately anticipated when sure on final.

Flap can be set to T/O or LAND when landing is assured on final to reduce landing ground roll on short field.

MTOW 1180kg

 $V_Y = 83 KIAS$

Touchdown speed can be as low as 50 kt with flap down.

UP

Select

- 1. Airspeed
- 2. Flaps
- 3. Emergency landing field

Emergency landing strip should be chosen considering surface condition, length and obstacles. Wind can be guessed by smoke plumes direction and tree tops or grass bending. Select touchdown direction according to the furrows of a plowed field, not across.

- 4. Safety belts
- 5. Flaps

CAUTION

6. Landing gear control lever

1

FASTEN and tighten

Set when landing is assured

DOWN when landing is assured

To reduce landing gear extension time, evaluate use of emergency control system which requires about 20 sec.

4th Edition, Rev. 0

MTOW 1230 kg

 $V_Y = 84 KIAS$

Before touch down

7.	Fuel Selector	BOTH OFF
8.	Electrical fuel pump	BOTH OFF
9.	Ignitions	ALL OFF

After aircraft stops:

10. MASTER SWITCH

OFF

When stopped

11. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.2 LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

If possible, as a nose landing gear flat tire condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Tightly fastened

If Nose Landing Gear flat tire is confirmed:

Preparation

- 1. Crew and passengers safety belts
- 2. If time permits
- 3. Flap setting

Before ground contact:

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions

On touch down:

- 7. Landing attitude
- 8. Touchdown speed
- 9. Aircraft nose

After aircraft stops:

10. FIELD LH and RH

11. MASTER SWITCH

Burn fuel to lower landing weight plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

12. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.3 LANDING WITH A KNOWN MAIN LANDING GEAR TIRE DEFLATED

An asymmetrical landing gear tire condition (RH and/or LH tires deflated) might turn into a hazardous situation, especially on uneven runways.

If possible, as a landing gear tires condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a main Landing Gear flat tire is confirmed:

Preparation

WARNING

- 1. Crew and passengers safety belts
- 2. Flap setting
- 3. Approach alignment

Before ground contact:

- 4. LH and RH Electrical fuel pump
- 5. LH and RH Fuel Selector
- 6. Ignitions

On touch down:

- 7. Touchdown speed
- 8. Touchdown
- 9. Heading and direction
- 10. Flattened tire

Tightly fastened plan approach with Flap Land Plan to land on the side of the good tire (drag in the middle)

BOTH OFF BOTH OFF ALL OFF

as low as 50 KIAS on the good tire gear only maintain applying appropriate aileron and rudder/steering control keep off the ground as long as possible

After aircraft stops (or if runway departure is imminent):

- 11. FIELD LH and RH
- 12. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

13. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.4 LANDING WITHOUT BRAKES

If possible, select an airport with suitable runway length. Otherwise, evaluate the possibility to perform a gear up landing (re-

fer to procedure reported on Para. 7.2). In the latter case consider the increasing hazard of an uneven pavement.

1. Safety belts

FASTEN

After touch down if runway is deemed insufficient to decelerate:

2. Fuel Selector	BOTH OFF
3. Electrical fuel pumps	BOTH OFF
4. Ignitions	ALL OFF
5. FIELD LH and RH	BOTH OFF
6. MASTER SWITCH	OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Before end of runway or if runway departure is imminent:

7. Landing gear control lever

UP

After aircraft stops:

8. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

11. AIRCRAFT EVACUATION

Leave the aircraft when engines are fully stopped. Watch for engine hot parts and fuel, hydraulic fluid or oil spills when using fuselage doors. If fuselage doors are unserviceable escape through the ditching emergency exit

In case of engine fire escape from opposite or upwind aircraft side.

Verify (if not yet performed):

1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	MASTER SWITCH	OFF
5.	Parking Brake	ENGAGED
6.	Leave the aircraft using emergency exits	

12. DITCHING

Contact with water shall happen with aircraft longitudinal axis and direction of motion parallel to the wave at the minimum possible speed. Keep the nose up as long as possible.

Once in the water, the aircraft shall be evacuated through the ditching emergency exit, if available put life vest on and set dinghy out first. Inflate them only outside the aircraft.

If available, try to approach any existing ship in the vicinity in order to be rapidly located and rescued right after ditching.

UP

FULL

1. Landing gear

WARNING

- 2. Safety belts
- 3. Flaps

Before water impact

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions
- 7. MASTER SWITCH
- 8. FIELD LH and RH
- 9. Impact speed

Aircraft evacuation

- 10. Emergency exit handle
- 11. Latch door
- 12. Life vests
- 13. Evacuate the aircraft

BOTH OFF BOTH OFF ALL OFF OFF BOTH OFF 50 KIAS

Tighten and fastened

rotate clockwise push outward don

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

SECTION 4 – NORMAL PROCEDURES

INDEX

1.	Introduction
1.1.	Normal ops general recommendations3
2.	Airspeeds5
2.1.	normal operations5
2.2.	single engine training5
3.	Normal procedures checklist7
3.1.	Recommendations for cold weather operations7
3.2.	Pre-flight check - Aircraft walk-around9
3.3.	Cockpit inspections 14
3.4.	Engine starting16
3.5.	Before taxiing 18
3.6.	Taxiing18
3.7.	Prior to takeoff 19
3.8.	Line-up
3.9.	Takeoff and climb 21
3.10	
3.11	. Turbulent air operation 22
3.12	. Descent and approach 22
3.13	. Before landing 22
3.14	Balked landing/missed approach 23
3.15	. After landing 24
3.16	Parking/shut down
3.17	26 Postflight checks
4.	Ground towing, parking and mooring27
4.1	Towing
4.2	Parking
4.3	Mooring 27

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2006T* aircraft.

1.1. NORMAL OPS GENERAL RECOMMENDATIONS

The following points should be always brought to attention to pilot/instructor/operator when operating a Tecnam aircraft equipped with variable pitch propeller:

1. Propeller governor ground check.

As prescribed by the propeller/governor manufacturer, a drop of 400/500 propeller RPM should be produced during this check. Its aim is to confirm the governor efficiency, not its complete feathering function.

Especially during the first cycle of propeller lever pulling, the governor tendency is to respond to the input with consistent delay, causing the pilot to continue moving back the propeller lever until an abrupt RPM change is observed. This causes an excessive drop in propeller speed that may reach up to 800 RPM in some cases and, consequently, a drop of up to 2000 engine shaft RPM. The long term result is a major wear of engine gearbox, bushings and pistons. In some cases, it may also result in detonation.

In order to avoid these long term adverse effects, the governor ground check should be performed by slowly and gently pulling the propeller lever. The purging cycle should be repeated 3 times, making sure that the governor closely and firmly controls the rpm.

The following recommendations have to be followed during the test:

- propeller speed drops shall be of 400/500 propeller RPM

- the cycle shall be repeated 3 times

- the pilot shall be ready to push the propeller lever if a drop of >500 RPM is recorded

2. Power changes.

When power setting changes are required in any flight condition, remember the following correct procedure:

- > Power increase = FIRST Prop THEN Map
- > Power reduction = FIRST Map THEN Prop

Useful guideline chart that could be used for best propeller/manifold combination is following reported:

3. Suitable Fuels.

Tecnam remember operators to fill the aircraft with approved and suitable fuels. Use of not approved/unknown fuels may cause damages to the engine.

ONLY USE APPROVED FUELS

For details refer to Section 2 of this manual (or applicable Supplement) and latest issue of Rotax SI-912-016

2. AIRSPEEDS

2.1. NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations, with reference to both MTOW: 1180 kg and 1230 kg (if Supplement A19 - Increased MTOW @1230 KG - is applicable).

		MT	OW
	FLAPS	1180kg	1230 kg
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS	65 KIAS
Best Angle-of-Climb Speed (V_X)	0°	73 KIAS	72 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS	84 KIAS
Approach speed	T/O	90 KIAS	90 KIAS
Final Approach Speed	FULL	70 KIAS	71 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS	122 KIAS
Never Exceed Speed (V _{NE})	0°	167 KIAS	171 KIAS

2.2. SINGLE ENGINE TRAINING

 V_{SSE} is a speed selected as training aid for pilots in the handling of multi-engine aircraft. It is the minimum speed for intentionally rendering on engine inoperative in flight. This minimum speed provides the margin the manufacturer recommends for us when intentionally performing engine inoperative manoeuvres during training. The best practice to perform single engine training is to retard one engine to the flight parameters equivalent to a dead engine.

A simulated feather condition is obtained with propeller lever full forward and throttle lever set at 13.5 in Hg MAP at 70-90 KIAS and 2000-4000 ft (density altitude).

	Recommended safe simulated OEI speed (V_{SSE})	70 KIAS
--	--	---------

NOTE

Keep speed above V_{SSE} for simulated OEI training operations.

Section 4 – Normal procedures AIRSPEEDS

In normal operations, shutting down an engine for training shall not become a habit, in particular for safety reasons and in order to optimise training; engine shutdown to perform OEI shall be executed only when required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or equivalent rule).

COSTRUZIONI AERONAUTICHE

The continuous operation of engine securing for training may indeed cause long term damages to the engine itself due to the high load coming from propeller (which is in feathering angle during the engine re-starting).

3. NORMAL PROCEDURES CHECKLIST

3.1. **Recommendations for cold weather operations**

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20° C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15° C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 3.1.

For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti-icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to take-off because this will seriously affect airplane performance. Aircraft with ice/snow accumulation is not cleared for flight.

If the aircraft must be operated in cold weather conditions within the range -25° C to -5° C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (warmer than -5° C);
- Let airplane temperature stabilize;
- Check pressure in hydraulic system, recharge if necessary;
- Heat the cabin to a suitable value to avoid windshield frost in flight; an electrical fan heater may be used inside the cabin;
- Tow airplane outside and perform engine starting.

3.2. PRE-FLIGHT CHECK - AIRCRAFT WALK-AROUND

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

COSTRUZIONI AERONAUTICHE

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Visual inspection is defined as follows: check for defects, cracks, delamination, excessive play, unsafe or improper installation as well as for general condition, presence of foreign objects, slippage markers etc. For control surfaces, visual inspection also involves additional check for freedom of movement. Always check the ground in the area of the aircraft for evidence of fuel, oil or operating fluids leakages.

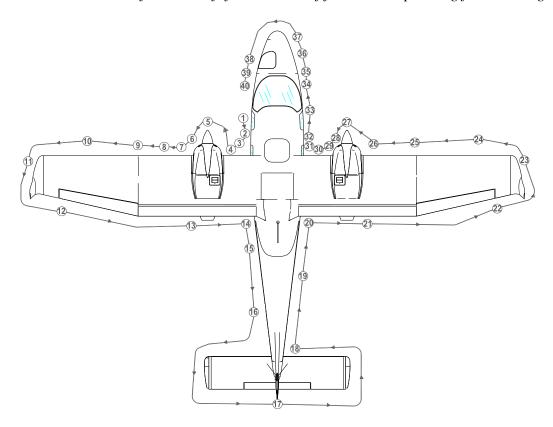


Figure 4.1

Section 4 – Normal procedures NORMAL PROCEDURES CHECKLIST

1	Pilot door and cabin	Check door for integrity. Turn ON the Mas- ter Switch and check Stall Warning switch for operation and condition; check lighting of Landing/Taxi/Nav/Strobe lights then turn OFF the Master Switch.
2	Left main landing gear	Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slip- page markers integrity, gear structure and shock absorber, hoses, gear door attach- ments and gear micro-switches. There should be no sign of hydraulic fluid leakage.
3	Wheel chock	Remove if employed
4	Propeller and spinner	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.
5	Left engine nacelle	Perform following inspections:
		 a) Check the surface conditions. b) Nacelle inlets and exhausts openings must be free of obstructions. If inlet and outlet plugs are installed, they should be removed. c) Check radiators. There should be no indication of leakage of fluid and they have to be free of obstructions. d) Only before the first flight of a day: (1) Verify coolant level in the expansion tank, replenish as required up to top (level must be at least 2/3 of the ex- pansion tank). (2) Verify coolant level in the overflow bottle through the slot under the na- celle: level must be between min. and max. mark. Replenish if re- quired removing the upper cowling; after that, install upper cowling checking for interferences with radi- ators.
		(3) Turn the propeller by hand to and fro, feeling the free rotation of 15° or 30° before the crankshaft starts to

4th Edition, Rev. 0

rotate. If the propeller can be turned

between the dogs with practically no

		 friction at all further investigation is necessary. Turn propeller by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression. e) Check oil level and replenish as required. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank. Prior to long flights oil should be added so that the oil level reaches the "max" mark. f) Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed. g) Check drainage hoses clamps h) Verify all parts are fixed or locked. i) Verify all inspection doors are closed.
6	Air induction system	Check engine air inlet for integrity and cor- rect fixing. The air intake filter must be free of obstructions.
7	Left fuel tank	Check that the refuelling port cap is proper- ly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
8	Landing and taxi lights	Visual inspection
9	Left wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condi- tion and free of obstruction. Check stall strip.
10	Left wing top and bottom panels	Visual inspection
11	Left winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing
12	Left aileron and balance mass	Visual inspection, remove tie-down devices and control locks if employed.

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page 4 - 12

13 Left Flap and hinges Visual inspection Remove protective cap – Visual inspection 14 Left static port 15 Antennas *Check for integrity* 16 Gear pump, external power and Check emergency landing gear extension battery compartment system pressure (low pressure limit: 20 bar), external power and battery compartments closure. 17 Check the actuating mechanism of control Horizontal and vertical empennage and tabs. Static discharge surfaces and the connection with related tabs. Check wicks for integrity. Remove tiewicks. down device if employed. 18 Stabilator leading edge *Check for integrity* 19 Fuselage top and bottom skin Visual inspection Right static port 20 Remove protective cap – Visual inspection 21 **Right Flap and hinges** Visual inspection 22 Right aileron and balance weight Visual inspection, remove tie-down devices and control locks if employed. 23 Right winglet, nav and strobe *Check for integrity and fixing and lighting* lights, static discharge wick 24 Right wing top and bottom pan-Visual inspection els 25 Right wing leading edge Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall

strip.

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page 4 - 13

26	Right fuel tank	Check that the refuelling port cap is proper- ly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
27	Propeller and spinner:	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fix- ing and lack of play between blades and hub.
28	Right engine nacelle	Apply check procedure reported in the walk- around station 5 and 6
29	Passenger door and cabin	Check door for integrity. Check safety belts for integrity and baggage for correct posi- tioning and fastening. Check ditching emer- gency exit safety lock. Check passengers ventilation ports for proper setting.
30	Right main landing gear	Apply check procedure reported in the walk- around Station 2
31	Wheel chock	Remove if employed
32	Bottom fuselage antennas	Check for integrity
33	Right cabin ram-air inlet	Visual inspection
34	Right Pitot tube	Remove protective cap and check for any obstruction
35	Nose landing gear	Check tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and retraction mechanism, shock absorber and gear doors attachments. There should be no sign of hydraulic fluid leakage.
36	Radome	Check for integrity
37	Radome access door	Visual inspection
38	Left Pitot tube	<i>Remove protective cap and check for any obstruction</i>
39	Left cabin ram-air inlet	Visual inspection

Avoid blowing inside Pitot-tube and inside airspeed indicator system's static ports as this may damage instruments.

3.3. COCKPIT INSPECTIONS

Instruct passengers on how to use safety belts and normal / emergency exits. Passenger embarkation should be done, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Do not smoke on board

- 1 Parking Brake
- 2 AFM
- **3** Weight and balance
- 4 Flight controls
- 5 Seat
- 6 Seat belt
- 7 Passenger briefing
- 8 Doors
- 9 Landing gear control knob
- 10 Breakers
- **11** MASTER SWITCH
- **12** Fuel quantity
- 13 RH fuel selector
- 14 LH fuel selector
- **15** RH Electrical Fuel Pump
- **16** RH Electrical Fuel pump
- 17 LH Electrical Fuel Pump
- **18** LH Electrical Fuel pump
- **19** Annunciator panel
- 20 Landing gear lights
- **21** ELT
- **22** Fire detector
- 23 Electrical pitch trim selector (if installed)
- 24 Engine levers friction
- 25 Flight controls
- 26 Alternate static port
- 27 Cabin heat
- **28** Flaps

31

29 Pitch trim control

30 Rudder trim control

CHECK ENGAGED CHECK on board CHECK if within the limits Remove seat belt used as lock Adjust as required Fastened *Completed* CLOSED AND LOCKED CHECK DOWN All IN ON **CHECK** RIGHT LEFT ON, check fuel pressure gauge correct operation and advisory light turned ON. OFF, check pressure decreased at zero ON, check fuel pressure gauge correct operation and advisory light turned ON. OFF, check pressure decreased at zero TEST TEST CHECK set to ARM TEST TEST Adjust if required CHECK free CHECK closed **CLOSED** Operate control to FULL position. Verify extension. Retract flaps.

Set to neutral position.

Set to neutral position.

Eng.Starting Battery Voltmeter (optional) Check 12 to 14 Volt

INTENTIONALLY LEFT BLANK

3.4. **ENGINE STARTING**

NOTE

Avionics switches must be set OFF during engine starting to prevent avionic equipment damage.

1	Start clearance	Obtain if needed
2	RH & LH crossbus	ON
3	CHRONOMETER	START

Right engine starting

1	RH Throttle lever	IDLE
2	RH Carburetor heat	OFF
3	RH Propeller Lever	FULL FORWARD
4	RH Choke	ON if required

Cold engine

Throttles idle (fully closed), chokes fully opened. Soon after starting, advance the throttle to let the propeller reach 800 RPM and slowly close the choke. Keep engine at 900 RPM for warm up period.

Hot engine

Park the aircraft with the nose pointing into wind in order to aid cooling. Keep chokes closed and slowly open the throttles one inch while cranking.

Flooded Engine after engine start failure

Keep chokes closed, open throttle fully and start the engine, then quickly reduce throttles to idle.

5	RH Electrical Fuel pump	ON, check advisory light ON and posi- tive fuel press build up
6	STROBES	ON
7	RH engine propeller zone	CHECK free
8	RH ignitions switches	BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

WARNING

- 9 RH start pushbutton
- RH engine oil gauge 10
- 11 RH Throttle lever
- 12 RH Choke
- **RH** Field 13
- 14 **RH** Ammeter
- 15 **RH** Voltmeter
- 16 **RH** Avionics

PUSH

CHECK if increasing within 10 sec. (max 7 bar in cold operation) Advance to reach 1200 RPM **OFF** ONCHECK Amps positive CHECK 12 to 14 Volt ON

Left engine starting

- 1 LH Throttle lever
- 2 LH Carburetor heat
- 3 LH Propeller Lever
- 4 LH Choke
- 5 LH Electrical Fuel pump
- 6 LH engine propeller zone
- 7 LH ignitions switches

IDLE OFF FULL FORWARD ON if required ON, check advisory light ON and positive fuel press build up CHECK free BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

- 8 LH start pushbutton
- 9 LH engine oil gauge
- **10** LH propeller RPM
- 11 LH Choke
- 12 LH Field
- 13 LH Ammeter
- 14 LH Voltmeter
- 15 LH Avionics

PUSH CHECK increasing within 10 sec. (max 7 bar in cold operation) 1200 RPM OFF ON CHECK Amps positive CHECK 12 to 14 Volt ON

3.5. BEFORE TAXIING

- 1 Let the engines warm up to a minimum oil temperature of 50°C at 1200 RPM
- Nav and taxi lights 2 ON Audio panel ON3 4 COM ON NAV 5 ON 6 Transponder Standby 7 Passengers and crews seat belts Fastened 8 Passengers and crews headphones Set as required

3.6. TAXIING

NOTE

Ensure that the main and passengers' doors warning lights are turned off.

- 1 LH/RH Fuel Selector
- 2 LH and RH fuel pressure
- **3** Parking Brake
- 4 Flight instruments
- 5 Engine instruments
- 6 Altimeter
- 7 Brakes

As required Monitor RELEASE CHECK CHECK SET both and crosscheck max difference 150 ft TEST

3.7. PRIOR TO TAKEOFF

1 2 3 4 5	Parking Brake RH Fuel Selector LH Fuel Selector LH and RH fuel pressure LH and RH Engine para		
	• Oil temperature:	90° - 110°C	
		(or 50 - 130 °C, if MOD2006/002 is applied)	
	• CHT / CT:	50° - 135°C / 50 - 120°C	
	• Oil pressure:	2-5 bar (above 1400 RPM): 0.8 bar (below 1400 RPM)	
	• Fuel pressure:	2.2 – 5.8 psi (0.15 - 0.40 bar)	
		*2.2 – 7.26 psi (0.15 – 0.50 bar)	
	*applicable for fuel pump part no.893110 and no.893114		

- 6 LH and RH Generator lights
- 7 LH and RH Propeller Lever
- 8 LH and RH Throttle Lever
- 9 RH Ignitions switches
- **10** RH Propeller Lever

CHECK BOTH OFF FULL FORWARD 1650 RPM

Set L / R / BOTH (*RPM drop with* single ignition circuit selected must not exceed 130 prop's *RPM*; maximum *RPM difference by use of either LH or RH circuits cannot exceed 50 RPM*) *GOVERNOR CHECK*

- a) Reduce prop speed to 1200 RPM;
- b) move propeller lever back to full forward position;
- c) repeat a) and b) 3 times;
- *d)* verify that the governor closely and firmly controls the *RPM*;
- e) verify that 1650 prop RPM are restored with prop lever in full forward position.

NOTE

. .

Do not cause the propeller speed drop below 1150 RPM in any case.

11	RH Carburettor heat	

- 12 RH Carburettor heat
- **13** RH engine instruments

ON, verify propeller RPM decreasing about 100 RPM OFF CHECK parameters within green arcs

14	LH Ignitions switches	Set L / R / BOTH (RPM drop with single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either cir- cuits LEFT or RIGHT cannot over- come 50 RPM)
15	RH Propeller Lever	 GOVERNOR CHECK f) Reduce prop speed to 1200 RPM; g) move propeller lever back to full forward position; h) repeat a) and b) 3 times; i) verify that the governor closely and firmly controls the RPM; j) verify that 1650 prop RPM are re-

j) verify that 1650 prop RPM are restored with prop lever in full forward position.

ON, verify propeller RPM decreasing

CHECK consistent with fuel plan

T/O or as required (see Section 5,

within green

NOTE

Do not cause the propeller speed drop below 1150 RPM in any case.

about 100 RPM

CHECK parameters

Take OFF performances)

SET neutral position

Check free

CHECK

OFF

arcs

- 16 LH Carburettor heat
- **17** LH Carburettor heat
- **18** LH engine instruments
- 19 LH and RH Fuel quantity indicator20 Flaps
- 21 Pitch trim and rudder trim
- 22 Flight controls
- 23 Seat belts fastened and doors closed and locked

3.8. LINE-UP

RELEASE, check full in Parking Brake 1 2 Annunciator panel CHECK cautions and warnings OFF 3 **RH** Fuel Selector RIGHT LH Fuel Selector LEFT 4 5 Pitot heat as required 6 Transponder SET ALT 7 Magnetic compass **CHECK** 8 Heading indicator **CROSS CHECK**

3.9. TAKEOFF AND CLIMB

- **1** Landing light
- 2 LH and RH Electrical Fuel pump
- **3** Carburettors heat
- 4 LH and RH Propeller Lever
- 5 LH and RH Throttle Lever
- **6** Engines instruments
- 7 Rotation speed
- 8 Apply brakes to stop wheel spinning
- 9 Landing gear control knob
- **10** Landing and taxi light
- 11 LH and RH Propeller Lever

ON BOTH ON CHECK OFF FULL FORWARD FULL POWER Parameters within green arcs

MTOW 1180kg	MTOW 1230 kg
Vr = 64 KIAS	Vr = 65 KIAS

UP: check green lights and TRANS light turned OFF within about 20" OFF when required Set max cont power at safe altitude

Max take off power must be limited to 5 minutes. Reduce Throttles MAP power before retracting Propeller to 2200 RPM or below.

12 LH and RH Electrical Fuel pump BOTH OFF

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude). Refer to Section 5, "Best climb gradient speed" table.

3.10. CRUISE

1

LH and RH Propeller LeverSET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

2 Engine parameters check (LH and RH)

- Oil temperature: $90^{\circ} 110^{\circ} C$ (or $50^{\circ} - 130^{\circ} C$, if MOD2006/002 is applied)
- CHT / CT: 50° 135° / 50° 120 °C
- Oil pressure: 2 5 bar.
- Fuel pressure: 2.2 5.8 psi *2.2 7.26 psi (0.15 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

3 Carburettor heat as needed (see also instructions addressed on Section 3

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

Fuel balance and crossfeed

check as necessary

4

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.11. TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

3.12. DESCENT AND APPROACH

1	Propellers	As required
NOTE	NOTE In order to control engine cooling and life, it is preferable to desc power above idle and RPM lower than full continuous.	
2	Carburettors heat	As required
3	Altimeter setting	QNH set and crosscheck
4	Rear passengers seats	Set at full aft position

3.13. BEFORE LANDING

1 2	LH and RH Electrical Fuel pump On downwind leg:		BOTH ON	
3	MTOW 1180kg	MTOW 1230 kg	Flaps T/O	
	V_{FE} = 119KIAS	$V_{FE}=122KIAS$		
	Speed below applicable VLO/VLE		00	ol knob - DOWN –
			Check green lights (DN
4	Carburettors heat		CHECK OFF	
5	LH and RH Propeller Lever		FULL FORWARD	
6	On final leg: speed below 93 KIAS		Flaps FULL	
7	Final Approach Speed		MTOW 1180kg	MTOW 1230 kg
8			$V_{APP}=70KIAS$	V _{APP} =71KIAS
	Landing and taxi lig	ht	ON	
9	Touchdown speed		65 KIAS	

3.14. BALKED LANDING/MISSED APPROACH

LH and RH Propeller Lever	FULL FORWARD
LH and RH Throttle Lever	FULL POWER

1

Propeller Lever increase to max RPM should be attained before engine Throttle Levers are advanced to max take off power. Max take off power must be limited to 5 minutes.

3	Flaps	Τ/Ο
4	Speed	AS REQUIRED (see Note)
5	Landing gear	UP as positive climb is achieved
6	Flaps	UP

NOTE

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude).Refer to Section 5, "Best climb gradient speed" table.

3.15. AFTER LANDING

- 1 LH and RH Electrical Fuel pump
- 2 Flaps
- 3 Pitot Heat
- 4 Landing light

BOTH OFF 0° OFF OFF when required

3.16. PARKING/SHUT DOWN

NOTE	It is always suggested to park the aircraft with the nose pointing into wind to improve cooling after shut down.		
1	Parking brake	Engage	
2	Taxi light	OFF	
3	Engines	Allow for cooling down 1 minute at idle	
		power	
4	Flaps	Check UP	
5	Trims	Check neutral	

Ensure the engine is at its lowest possible idle speed before selecting ignitions off.

6	Ignition switches	Turn OFF one at a time
7	LH and RH AVIONIC BUS	OFF
8	LH and RH CROSS BUS	OFF
9	LH/RH Field	OFF
10	All external lights switches	OFF
11	Master Switch	OFF
12	Emg Batt / Emg cockpit light /	
	Emg ADI switches	Check OFF

NOTE

Before disembarkation verify propellers are fully stopped.

WARNING

Instruct passengers to fully open pax door (against nacelle stop) and depart alongside aircraft fuselage, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Crew should avoid propeller disc area crossing while proceeding alongside a fully opened pilot's door (up to 110°).

3.17. POSTFLIGHT CHECKS

- **1** Protective cover for Pitot tubes, stall warning and stat- *Install* ic port plugs.
- 2 Lock one control wheel with safety belt.
- 3 Wheel chocks
- 4 Aileron lock
- 5 Pilot and passengers doors.

Place under MLG Place and tighten Close and latch

4. GROUND TOWING, PARKING AND MOORING

4.1 Towing

TECNAM

When the a/c is moved on the ground, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

4.2 PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake and install control locks
- 3. Secure pilot control wheel by wrapping the seat belt around it.

Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 4.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

4.3 MOORING

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

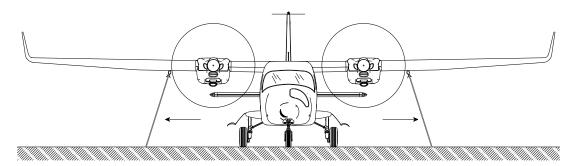
Section 4 – Normal procedures

GROUND TOWING, PARKING AND MOORING

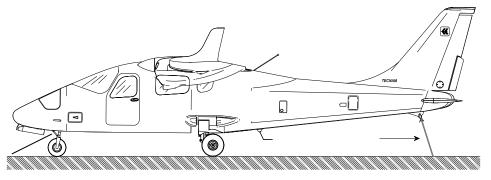
Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind.
- 2. Center nose wheel, engage parking brake and/or use the wheel chocks.



Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.


- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks and protective plugs.
- 7. Close and lock cabin doors.
- 8. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)

Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring - front view

Mooring - side view

INTENTIONALLY LEFT BLANK

Section 4 – Normal procedures GROUND TOWING, PARKING AND MOORING

INTENTIONALLY LEFT BLANK

Section 4 – Normal procedures GROUND TOWING, PARKING AND MOORING

COSTECNAM P2006T - Aircraft Flight Manual Page 5 - 1

SECTION 5 - PERFORMANCES

INDEX

Introduction	2
Use of performances charts	2
Airspeed indicator system calibration	
ICAO Standard Atmosphere	4
Examples:	4
Stall speed	5
Crosswind	6
Take-off performances	7
Take-off Rate of Climb	10
Take-off Rate of Climb at V _x	11
Enroute Rate of Climb	12
Enroute Rate of Climb at V_x	13
One-Engine Rate of Climb	14
One-Engine Rate of Climb at V _{xse}	15
Cruise performances	16
Landing performances	19
Balked landing climb gradient	
Noise data	
	Use of performances charts

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

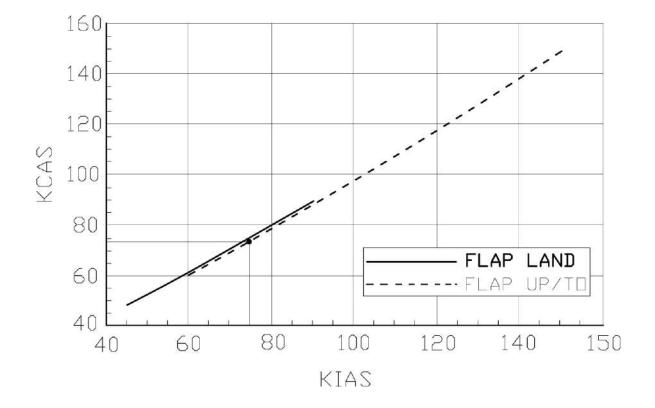
Data reported in graphs and/or in tables were determined using:

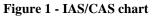
- "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

*airspeed

- *external temperature
- *altitude
- *weight
- *runway type and condition


2. Use of performances charts


Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Graph shows calibrated airspeed V_{CAS} as a function of indicated airspeed V_{IAS} .

Example:

<u>Given</u>	
KIAS 75	

<u>Find</u> KCAS 74

4. ICAO STANDARD ATMOSPHERE

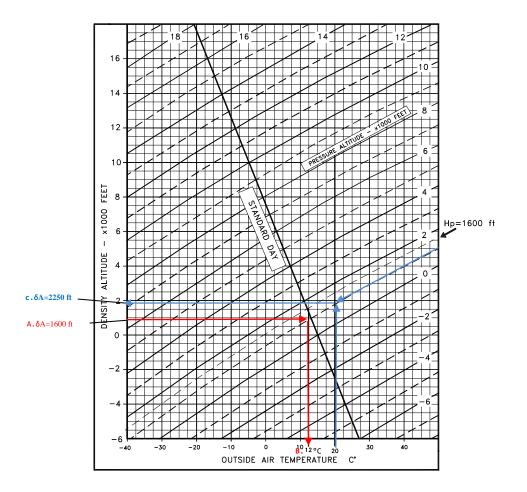
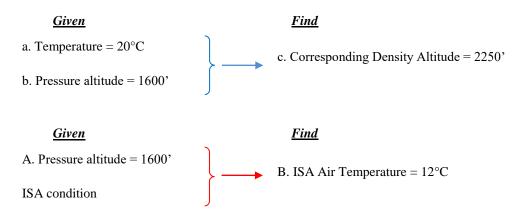



Figure 2 – ICAO chart

5. EXAMPLES:


```
4<sup>th</sup> Edition, Rev. 0
```

Section 5 - Performances ICAO STANDARD ATMOSPHERE

COSTRUZIONI A ROMANTICHE P2006T - Aircraft Flight Manual Page 5 - 5

6. STALL SPEED

Weight: 1180 kg Throttle Levers: IDLE Landing Gear: Down CG: Most Forward (16.5%) No ground effect

WEIGHT	BANK			STALL	Speed		
	ANGLE	FLAF	vs 0°	FLAPS	т/о	FLAPS FULL	
[kg]	[deg]	KIAS	S KCAS		KCAS	KIAS	KCAS
	0	66	64	56	56	53	54
	15	67	65	57	57	54	55
1230 (FWD C.G.)	30	70	69	60	60	58	58
(<i>FWD</i> C.G.)	45	77	76	67	67	64	64
	60	93	90	81	79	78	76

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 200 ft with banking below 30°.

7. CROSSWIND

Maximum demonstrated crosswind is 17 Kts

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 Kts

Headwind = 17.5 Kts

Crosswind = 10 Kts

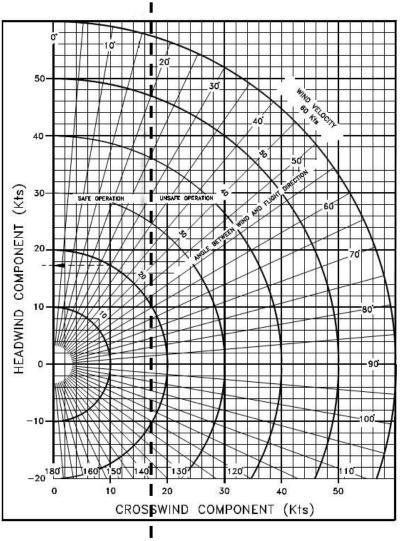


Figure 3 – Crosswind diagram

Section 5 - Performances crosswind

COSTRUZION ARRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 7

8. TAKE-OFF PERFORMANCES

<u>Weight = 1180 kg</u>

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Runway: Grass										
Pressure				Distance [m]					
Altitude			Tempera	ture [°C]		ISA				
[ft]		-25	0	25	50	154				
S.L.	Ground Roll	208	258	313	374	290				
J.L.	At 50 ft AGL	266	331	404	485	373				
1000	Ground Roll	230	284	346	413	315				
1000	At 50 ft AGL	294	366	447	537	407				
2000	Ground Roll	254	315	382	457	343				
2000	At 50 ft AGL	326	406	495	595	444				
3000	Ground Roll	281	348	423	505	374				
3000	At 50 ft AGL	401	499	610	733	529				
4000	Ground Roll	311	385	468	560	408				
4000	At 50 ft AGL	401	499	610	733	529				
5000	Ground Roll	345	427	519	620	445				
5000	At 50 ft AGL	445	555	677	814	579				
6000	Ground Roll	383	474	575	688	486				
0000	At 50 ft AGL	495	617	753	906	633				
7000	Ground Roll	425	526	639	764	531				
7000	At 50 ft AGL	551	686	839	1008	693				
8000	Ground Roll	472	585	710	849	581				
0000	At 50 ft AGL	614	765	934	1123	759				
9000	Ground Roll	525	650	790	945	635				
5000	At 50 ft AGL	685	853	1042	1253	833				
10000	Ground Roll	585	724	879	1052	696				
10000	At 50 ft AGL	764	952	1163	1399	914				

4th Edition, Rev. 0

Section 5 - Performances

TAKE-OFF PERFORMANCES

COSTECNAM P2006T - Aircraft Flight Manual Page 5 - 8

Weight = 1080 kg

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Bunway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Pressure				Distance [m		
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	IJA
S.L.	Ground Roll	148	188	234	286	215
J.L.	At 50 ft AGL	193	246	306	374	281
1000	Ground Roll	165	210	261	319	235
1000	At 50 ft AGL	216	274	341	418	308
2000	Ground Roll	184	234	291	356	258
2000	At 50 ft AGL	241	306	381	466	338
3000	Ground Roll	206	262	326	398	284
	At 50 ft AGL	301	383	477	583	409
4000	Ground Roll	230	293	364	446	312
	At 50 ft AGL	301	383	477	583	409
5000	Ground Roll	258	328	408	499	343
5000	At 50 ft AGL	338	429	534	653	449
6000	Ground Roll	289	368	457	559	378
6000	At 50 ft AGL	378	481	599	732	495
7000	Ground Roll	324	412	513	628	417
7000	At 50 ft AGL	425	540	672	822	545
8000	Ground Roll	364	463	577	705	460
8000	At 50 ft AGL	477	606	755	923	602
0000	Ground Roll	410	521	648	793	508
9000	At 50 ft AGL	536	682	849	1038	664
10000	Ground Roll	461	586	730	893	561
10000	At 50 ft AGL	604	767	955	1168	734

4th Edition, Rev. 0

Section 5 - Performances TAKE-OFF PERFORMANCES

COSTRUZION A RONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 9

<u>Weight = 930 kq</u>

Corrections

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Pressure				Distance [m]]	
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	IJA
S.L.	Ground Roll	100	127	158	194	146
J.L.	At 50 ft AGL	131	167	207	254	190
1000	Ground Roll	112	142	177	216	160
1000	At 50 ft AGL	146	186	231	283	209
2000	Ground Roll	125	159	197	242	175
2000	At 50 ft AGL	163	208	258	316	229
2000	Ground Roll	140	177	221	270	192
3000	At 50 ft AGL	204	260	323	395	277
4000	Ground Roll	156	198	247	302	212
4000	At 50 ft AGL	204	260	323	395	277
5000	Ground Roll	175	222	277	338	233
5000	At 50 ft AGL	229	291	362	443	305
6000	Ground Roll	196	249	310	379	256
6000	At 50 ft AGL	257	326	406	496	335
7000	Ground Roll	220	280	348	426	282
7000	At 50 ft AGL	288	366	455	557	370
9000	Ground Roll	247	314	391	478	312
8000	At 50 ft AGL	323	411	512	626	408
0000	Ground Roll	278	353	440	538	344
9000	At 50 ft AGL	364	462	575	704	450
10000	Ground Roll	313	397	495	605	380
10000	At 50 ft AGL	409	520	648	792	498

EXECUTION ARRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 10

9. TAKE-OFF RATE OF CLIMB

Power Setting: Maximum Continuous Power Flaps: Take-Off Landing Gear: Up									
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]						
	Altitude	Vy		Tempera	ture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	0	25	50	10/1		
	S.L.	85	1347	1154	982	826	1048		
	2000	82	1200	1010	841	688	933		
	4000	79	1054	867	701	551	818		
1180	6000	76	908	725	561	413	704		
1180	8000	73	763	583	422	277	589		
	10000	70	618	441	283	141	474		
	12000	67	473	300	145	5	359		
	14000	64	330	159	7	-130	244		
	S.L.	85	1507	1302	1119	954	1190		
	2000	82	1351	1150	970	808	1068		
	4000	79	1196	998	822	662	946		
1080	6000	76	1041	847	674	517	825		
1000	8000	73	887	696	526	372	703		
	10000	69	734	546	379	228	581		
	12000	66	581	397	232	84	459		
	14000	63	428	248	86	-59	338		
	S.L.	85	1803	1575	1372	1189	1451		
	2000	82	1630	1406	1206	1026	1315		
	4000	79	1457	1238	1041	864	1180		
930	6000	75	1286	1070	877	703	1045		
330	8000	72	1114	902	713	542	909		
	10000	69	944	735	549	382	774		
	12000	65	774	569	387	222	639		
	14000	62	604	404	224	63	503		

4th Edition, Rev. 0

Section 5 - Performances TAKE-OFF RATE OF CLIMB

10. Take-off Rate of Climb at $V_{\rm x}$

Power Setting: Maximum Continuous Power Flaps: Take-Off Landing Gear: Up								
Weight	Pressure	Climb Speed]	
C C	Altitude	Vx		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50	154	
	S.L.	78	1283	1102	940	794	1002	
	1000	76	1214	1034	874	729	949	
	2000	75	1145	967	808	664	895	
1180	3000	74	1076	900	742	600	841	
1180	4000	73	1008	833	676	535	787	
	5000	72	939	766	611	471	733	
	6000	71	871	699	545	407	679	
	7000	70	803	632	480	342	625	
	S.L.	78	1283	1102	940	794	1002	
	1000	76	1214	1034	874	729	949	
	2000	75	1145	967	808	664	895	
1080	3000	74	1076	900	742	600	841	
1000	4000	73	1008	833	676	535	787	
	5000	72	939	766	611	471	733	
	6000	71	871	699	545	407	679	
	7000	70	803	632	480	342	625	
	S.L.	78	1435	1243	1072	918	1138	
	1000	76	1362	1172	1002	849	1081	
	2000	75	1289	1101	932	780	1024	
020	3000	74	1216	1030	863	712	967	
930	4000	73	1144	958	793	644	910	
	5000	72	1071	888	724	576	853	
	6000	71	999	817	654	508	796	
	7000	69	927	746	585	440	739	

Section 5 - Performances TAKE-OFF RATE OF CLIMB AT VX

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 12

11. ENROUTE RATE OF CLIMB

Power Setting: Maximum Continuous Power Flaps: Up Landing Gear: Up								
Weight	Pressure	Climb Speed	Rate of Climb [ft/min]					
	Altitude	Vy		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	84	1392	1205	1038	887	1102	
	2000	83	1249	1066	901	753	991	
	4000	81	1108	927	766	620	880	
1180	6000	79	966	789	630	487	768	
1180	8000	77	826	651	495	355	657	
	10000	75	685	514	361	223	546	
	12000	73	545	377	227	92	434	
	14000	71	406	241	93	-39	323	
	S.L.	83	1560	1360	1182	1022	1251	
	2000	82	1408	1212	1037	879	1132	
	4000	80	1257	1064	892	737	1014	
1080	6000	78	1106	917	748	595	895	
1000	8000	76	956	770	604	454	776	
	10000	74	807	624	461	314	658	
	12000	72	657	478	318	173	539	
	14000	70	509	333	175	34	420	
	S.L.	82	1873	1649	1449	1269	1527	
	2000	81	1703	1483	1286	1109	1393	
	4000	79	1533	1317	1124	950	1260	
930	6000	77	1364	1151	962	791	1127	
530	8000	75	1196	987	800	632	994	
	10000	73	1028	823	639	474	861	
	12000	71	860	659	479	317	727	
	14000	69	693	496	319	160	594	

12. ENROUTE RATE OF CLIMB AT V_x

Power Setting: Maximum Continuous Power Flaps: Up Landing Gear: Up								
Weight	Pressure	Climb Speed	F	Rate of Climb at V _x [ft/min]				
	Altitude	Vx		Tempera	ture [°C]	l	ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	72	1315	1142	987	848	1047	
	1000	72	1249	1077	924	786	996	
	2000	72	1183	1013	861	724	944	
1180	3000	72	1118	949	799	663	893	
1180	4000	72	1052	885	736	601	841	
	5000	71	987	821	673	540	790	
	6000	71	922	757	611	479	738	
	7000	71	856	694	548	417	687	
	S.L.	72	1480	1295	1130	981	1194	
	1000	72	1410	1226	1062	915	1139	
	2000	72	1340	1158	995	848	1084	
1080	3000	72	1269	1089	928	782	1029	
1000	4000	71	1199	1020	861	717	973	
	5000	71	1129	952	794	651	918	
	6000	71	1059	884	727	585	863	
	7000	71	990	815	660	520	808	
	S.L.	72	1787	1578	1391	1223	1463	
	1000	72	1707	1500	1315	1148	1401	
	2000	71	1628	1422	1239	1074	1339	
020	3000	71	1549	1345	1163	999	1277	
930	4000	71	1470	1268	1087	925	1215	
	5000	71	1391	1190	1012	851	1153	
	6000	71	1312	1113	936	777	1090	
	7000	70	1233	1036	861	703	1028	

13. ONE-ENGINE RATE OF CLIMB

Power Setting: Maximum Continuous Power (operative engine), propeller feathered (inoperative engine) Flaps: Up Landing Gear: Up								
Weight	Pressure Altitude	Climb Speed		Rate of	f Climb [ˈ	ft/min]		
Weight		V _{ySE}		Tempera	ture [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	80	362	261	171	89	206	
	1000	80	324	224	134	53	176	
	2000	80	285	186	97	17	146	
1100	3000	79	247	148	60	-19	116	
1180	4000	79	209	111	24	-55	85	
	5000	79	171	74	-13	-91	55	
	6000	79	132	36	-49	-127	25	
	7000	78	94	-1	-86	-163	-5	
	S.L.	80	436	330	235	149	271	
	1000	80	396	290	196	111	240	
	2000	79	355	251	157	73	208	
1000	3000	79	315	211	118	35	176	
1080	4000	79	275	172	80	-3	145	
	5000	79	234	132	41	-41	113	
	6000	78	194	93	3	-78	81	
	7000	78	154	54	-35	-116	50	
	S.L.	79	574	455	349	253	390	
	1000	79	529	411	305	211	355	
	2000	79	483	367	262	168	319	
020	3000	78	438	322	219	126	284	
930	4000	78	393	278	176	83	248	
	5000	78	348	235	133	41	213	
	6000	78	304	191	90	-1	178	
	7000	77	259	147	47	-43	142	

EXECUTION ARRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 15

14. One-Engine Rate of Climb at V_{xSE}

Power Setting: Maximum Continuous Power (operative engine), propeller feathered (inoperative engine) Flaps: Up Landing Gear: Up									
Weight	Pressure Altitude	Climb Speed	Rate of Climb at V _{xSE} [ft/min]						
weight		V _{xSE}		Tempera	ture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	0	25	50			
	S.L.	79	356	257	168	88	203		
	1000	79	319	220	132	53	173		
	2000	79	281	183	96	17	144		
1180	3000	79	243	146	60	-18	114		
1120	4000	78	206	110	24	-53	84		
	5000	78	168	73	-12	-89	55		
	6000	78	131	36	-48	-124	25		
	7000	78	93	0	-84	-159	-4		
	S.L.	79	424	321	229	147	265		
	1000	79	385	283	192	110	234		
	2000	79	346	245	155	73	204		
1000	3000	79	307	207	117	37	173		
1080	4000	79	268	169	80	0	143		
	5000	78	229	131	43	-36	112		
	6000	78	190	93	6	-73	81		
	7000	78	152	55	-31	-109	51		
	S.L.	78	556	442	341	249	380		
	1000	78	513	400	299	209	346		
	2000	78	469	358	258	168	312		
020	3000	78	426	316	217	128	279		
930	4000	78	383	274	176	87	245		
	5000	78	340	232	134	47	211		
	6000	77	298	190	93	7	177		
	7000	77	255	148	52	-34	143		

15. CRUISE PERFORMANCES

Pressur	Pressure Altitude: 0 ft										
		ISA -	- 30°C (-1	.5°C)	I	SA (15°C)	ISA ·	ISA + 30°C (45°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2250	29.5	103%	143	28.6	97%	145	27.1	92%	146	25.8	
2250	28	88%	134	24.5	83%	136	23.2	79%	138	22	
2250	26	69%	122	19.2	65%	124	18.2	62%	125	17.3	
2250	24	59%	115	16.6	56%	116	15.7	53%	117	14.9	
2250	22	46%	103	12.8	43%	103	12.1	41%	103	11.5	
2250	20	39%	96	11	37%	95	10.4	35%	94	9.9	
2100	28	84%	132	23.5	80%	134	22.2	76%	135	21.1	
2100	26	66%	121	18.5	63%	122	17.5	60%	123	16.7	
2100	24	57%	114	16	54%	114	15.1	52%	115	14.4	
2100	22	43%	100	12.1	41%	100	11.5	39%	100	10.9	
2100	20	37%	92	10.2	35%	91	9.7	33%	89	9.2	
1900	26	61%	117	17.1	58%	118	16.2	55%	119	15.4	
1900	24	53%	110	14.9	50%	111	14.1	48%	111	13.4	
1900	22	41%	97	11.4	39%	97	10.8	37%	96	10.2	
1900	20	35%	89	9.6	33%	88	9.1	31%	85	8.7	
	ller RPM Consumpt	tion for e	each Engl	ine							

COSTRUZIONALARIONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 17

Weight	: 1150 kg	5									
Pressur	e Altitud	le: 3000	ft								
		ISA -	- 30°C (-2	21°C)		ISA (9°C)	_	ISA	ISA + 30°C (39°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	TCAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	26.4	92%	141	25.7	87%	143	24.3	83%	144	23.1	
2250	26.4	89%	139	25	85%	141	23.6	80%	143	22.4	
2250	26	85%	137	23.9	81%	138	22.6	77%	140	21.5	
2250	24	72%	128	20	68%	129	18.9	64%	130	18	
2250	22	57%	116	16	54%	117	15.1	51%	118	14.3	
2250	20	48%	108	13.4	45%	108	12.7	43%	108	12.1	
2100	26.4	85%	137	23.9	81%	138	22.6	77%	140	21.4	
2100	26	82%	134	22.8	77%	136	21.6	73%	137	20.5	
2100	24	69%	125	19.2	65%	127	18.1	62%	128	17.2	
2100	22	54%	114	15.2	51%	114	14.3	49%	115	13.6	
2100	20	45%	104	12.6	43%	104	11.9	41%	104	11.3	
1900	26.4	78%	132	21.9	74%	134	20.7	70%	135	19.6	
1900	26	75%	130	20.9	71%	131	19.8	67%	132	18.8	
1900	24	63%	121	17.7	60%	122	16.7	57%	123	15.9	
1900	22	50%	110	14.1	48%	110	13.3	45%	110	12.6	
1900	20	42%	101	11.7	40%	101	11.1	38%	100	10.6	
* Propell	ler RPM				-						

** Fuel Consumption for each Engine

Weight	: 1150 kg	7								
Pressur	Pressure Altitude: 6000 ft									
		ISA -	– 30°C (-2	27°C)		ISA (3°C)		ISA + 30°C (33°C)		
RPM *	MAP	PWR	ктаѕ	F.C.**	PWR	KTAS	F.C.**	PWR	ктаѕ	F.C.**
	[inHg]	FVVI	RIAJ	[lt/hr]	FVVI	KIAJ	[lt/hr]	FVVI	RIAJ	[lt/hr]
2388	23.6	83%	139	23.3	79%	141	22	75%	142	20.9
2250	23.6	81%	138	22.6	76%	139	21.4	73%	141	20.3
2250	22	68%	129	19.1	65%	130	18.1	61%	131	17.2
2250	20	57%	119	15.8	54%	120	14.9	51%	120	14.2
2250	18	46%	108	12.9	44%	108	12.2	41%	107	11.6
2100	23.6	77%	135	21.6	73%	137	20.4	69%	138	19.4
2100	22	65%	126	18.2	62%	127	17.2	59%	128	16.4
2100	20	54%	116	15	51%	116	14.1	48%	117	13.4
2100	18	44%	106	12.4	42%	106	11.7	40%	105	11.1
1900	23.6	71%	130	19.8	67%	132	18.7	64%	133	17.8
1900	22	60%	122	16.8	57%	123	15.8	54%	123	15
1900	20	50%	112	13.9	47%	112	13.1	44%	112	12.4
1900	18	41%	102	11.6	39%	102	10.9	37%	100	10.4
* Propell	er RPM									
** Fuel Co	onsumptio	n for eac	h Engine							

COSTRUZION ARRONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 18

Weight	: 1150 kg	7									
Pressur	Pressure Altitude: 9000 ft										
		ISA -	ISA – 30°C (-33°C)			ISA (-3°C)			ISA + 30°C (27°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	21.1	75%	137	20.9	71%	139	19.7	67%	140	18.7	
2250	21.1	73%	136	20.3	69%	137	19.2	65%	138	18.2	
2250	20	65%	130	18.3	62%	131	17.2	58%	131	16.3	
2250	18	53%	118	14.9	50%	119	14	48%	118	13.3	
2100	21.1	69%	133	19.4	65%	134	18.3	62%	135	17.4	
2100	20	62%	127	17.4	59%	128	16.4	56%	128	15.6	
2100	18	51%	116	14.2	48%	116	13.4	46%	116	12.7	
1900	21.1	64%	128	17.8	60%	129	16.8	57%	130	15.9	
1900	20	57%	122	16	54%	123	15.1	51%	123	14.3	
1900	18	47%	112	13.2	44%	112	12.4	42%	111	11.8	
* Propel	ller RPM			-	-				-	-	

** Fuel Consumption for each Engine

•	Weight: 1150 kg									
Pressure Altitude: 12000 ft										
		ISA -	ISA – 30°C (-39°C)			ISA (-9°C)		ISA + 30°C (21°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	18.8	67%	135	18.8	63%	136	17.7	60%	136	16.7
2250	18.8	65%	133	18.2	61%	134	17.2	58%	134	16.3
2250	18	60%	129	16.8	57%	129	15.9	54%	129	15
2100	18.8	62%	130	17.4	59%	131	16.4	56%	132	15.5
2100	18	58%	126	16.1	54%	126	15.2	51%	126	14.4
1900	18.8	57%	125	15.9	54%	126	15	51%	126	14.2
1900	18	53%	121	14.8	50%	121	13.9	47%	121	13.2
	* Propeller RPM ** Fuel Consumption for each Engine									

16. LANDING PERFORMANCES

Weight = 1180 kg

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (*16 ft/kt*) Tailwind: + 11m for each kt (*36ft/kt*) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure			[Distance [m	n]	
Altitude			Tempera	ture [°C]		ISA
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	183	202	220	238	213
3.L.	At 50 ft AGL	288	312	335	358	326
1000	Ground Roll	190	209	228	247	219
1000	At 50 ft AGL	297	321	345	369	334
2000	Ground Roll	197	217	237	256	226
2000	At 50 ft AGL	306	331	356	381	342
3000	Ground Roll	204	225	245	266	232
	At 50 ft AGL	325	352	379	405	360
4000	Ground Roll	212	233	255	276	239
4000	At 50 ft AGL	325	352	379	405	360
5000	Ground Roll	220	242	264	287	247
5000	At 50 ft AGL	335	363	391	418	369
6000	Ground Roll	228	251	275	298	254
0000	At 50 ft AGL	346	375	403	431	378
7000	Ground Roll	237	261	285	309	262
7000	At 50 ft AGL	357	387	416	445	388
8000	Ground Roll	246	271	296	321	270
5000	At 50 ft AGL	368	399	430	460	398
9000	Ground Roll	256	282	308	334	279
5000	At 50 ft AGL	380	412	444	475	409
10000	Ground Roll	266	293	320	347	288
10000	At 50 ft AGL	393	426	459	491	420

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 20

<u>Weight = 1080 kg</u>

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll **Runway slope:** - 2.5% to Ground Roll for each +1%

Pressure		Distance [m]						
Altitude			Tempera	ture [°C]		ISA		
[ft]		-25	0	25	50	IJA		
S.L.	Ground Roll	175	192	210	227	203		
3.L.	At 50 ft AGL	271	293	315	337	306		
1000	Ground Roll	181	199	218	236	209		
1000	At 50 ft AGL	279	302	325	348	314		
2000	Ground Roll	188	207	226	245	215		
2000	At 50 ft AGL	288	311	335	358	322		
3000	Ground Roll	195	215	234	254	222		
	At 50 ft AGL	306	331	356	381	338		
4000	Ground Roll	202	223	243	263	228		
4000	At 50 ft AGL	306	331	356	381	338		
5000	Ground Roll	210	231	252	273	235		
5000	At 50 ft AGL	315	342	368	394	347		
6000	Ground Roll	218	240	262	284	243		
0000	At 50 ft AGL	325	353	380	406	356		
7000	Ground Roll	226	249	272	295	250		
7000	At 50 ft AGL	336	364	392	420	365		
8000	Ground Roll	235	259	283	306	258		
0000	At 50 ft AGL	347	376	405	434	375		
9000	Ground Roll	244	269	294	318	266		
9000	At 50 ft AGL	358	388	418	448	385		
10000	Ground Roll	254	280	305	331	275		
10000	At 50 ft AGL	370	401	432	463	395		

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page 5 - 21

Weight = 930 kg

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt) Tailwind: + 11m for each kt (36ft/kt) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure			ſ	Distance [m]		
Altitude			Tempera	ture [°C]		ISA	
[ft]		-25	0	25	50	ISA	
S.L.	Ground Roll	150	166	181	196	175	
3.L.	At 50 ft AGL	233	252	271	290	264	
1000	Ground Roll	156	172	187	203	180	
1000	At 50 ft AGL	240	260	280	299	270	
2000	Ground Roll	162	178	194	211	185	
2000	At 50 ft AGL	248	268	288	309	277	
3000	Ground Roll	168	185	202	219	191	
	At 50 ft AGL	263	285	307	328	291	
4000	Ground Roll	174	192	209	227	197	
4000	At 50 ft AGL	263	285	307	328	291	
5000	Ground Roll	181	199	217	235	203	
5000	At 50 ft AGL	272	294	317	339	299	
6000	Ground Roll	188	207	226	244	209	
6000	At 50 ft AGL	280	304	327	350	307	
7000	Ground Roll	195	215	234	254	215	
7000	At 50 ft AGL	289	313	338	361	315	
8000	Ground Roll	203	223	243	264	222	
8000	At 50 ft AGL	299	324	349	373	323	
0000	Ground Roll	210	232	253	274	229	
9000	At 50 ft AGL	308	334	360	386	331	
10000	Ground Roll	219	241	263	285	237	
10000	At 50 ft AGL	319	346	372	399	340	

17. BALKED LANDING CLIMB GRADIENT

Flight conditions (ISA and SL):

Weight:	1180 kg
Throttle levers	Both FULL FORWARD
Flaps	Τ/Ο
Landing gear	DOWN
Weight	MTOW (1180 kg)
Speed	66 KIAS
Climb gradient	10.8% (6.2°)

18. NOISE DATA

Noise level, determined in accordance with ICAO/Annex 16 4th Ed., July 2005, Vol. I°, Chapter 10, is 67.07 dB(A).

COSTRUZIONA AERONANTICHE P2006T - Aircraft Flight Manual Page 6 - 1

SECTION 6 – WEIGHT and BALANCE

INDEX

1. 1	INTRODUCTION	3
2.	WEIGHING PROCEDURES	4
2.*	1. Preparation	4
	2. Levelling	
	3. Weighing	
	4. Determination of C.G. location	
2.	5. Weighing record	5
	6. Weighing record (II)	
3. 1	WEIGHTS AND C.G	7
4. I	BAGGAGE LOADING	8
5. I	EQUIPMENT LIST	10

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section describes the procedure for establishing the basic empty weight and the moment of the aircraft. Loading procedure information is also provided.

Aircraft must be operated in accordance with the limits concerning the maximum takeoff weight and CG excursion as reported in Flight Manual Section 2.

Pilot is responsible for checking the weight and CG excursion are compliant with the related limits. CG excursion and weight limits are reported in Section 2 - Limitations.

2. WEIGHING PROCEDURES

2.1. **P**REPARATION

- Carry out weighing procedure inside closed hangar
- Remove from cabin any object unintentionally left
- Make sure Flight Manual and mandatory documents are on board
- Align nose wheel
- Drain fuel via the specific drain valve
- Oil, hydraulic fluid and coolant liquid at the operating levels
- Move sliding seats to most forward position
- Raise flaps to fully retracted position
- Place control surfaces in neutral position
- Place scales (min. capacity 300 kg) under each wheel

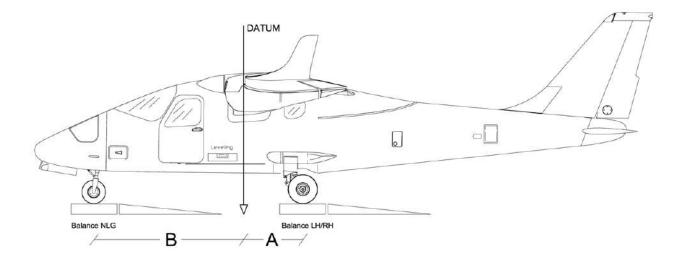
2.2. LEVELLING

- Level the aircraft (the reference for longitudinal levelling is made putting a spirit-level on the cabin floor as shown in the Aircraft Maintenance Manual).
- Adjust longitudinal attitude deflating nose tire

2.3. WEIGHING

- Record weight shown on each scale
- Repeat weighing procedure three times
- Calculate empty weight

2.4. **DETERMINATION OF C.G.** LOCATION


- Drop a plumb bob tangent to the wing leading edge and trace a reference mark on the floor (see Figure on Para. 2.5 or 2.6)
- Repeat the operation for other wing
- Stretch a taught line between the two marks
- Measure the distance between the reference line and both main and nose wheel axis (A and B distances respectively)
- Using recorded data it is possible to determine the aircraft C.G. location and the aircraft moment (see following table)

Section 6 – Weight and balance

2.5. WEIGHING RECORD

Model **P2006T** S/N:_____ Weighing no. ____ Date:_____

Datum: leading edge vertical

	[kg] or [lbs]		[m] or [ft]
Nose wheel weight	$\mathbf{W}_1 =$	Plumb bob distance LH wheel	$A_L =$
LH wheel weight	$W_L =$	Plumb bob distance RH wheel	$A_R =$
RH wheel weight	$W_R =$	Average distance $(A_L + A_R)/2$	A =
$W_2 = W_L + W_R =$		Plumb bob distance from nose wheel	B =

Empty weight $We = W_1 + W_2 =$

[kg] or [lbs]

 $D = \frac{W_2 \cdot A - W_1 \cdot B}{We} =$ [m] or [ft] D% = (D / 1.339 m) x 100 = or D% = (D / 4.39 ft) x 100 =

Empty weight moment: M = (D We) =

 $[m \cdot Kg]$ or $[Ft \cdot Lbs]$

Maximum takeoff weight	$W_T = [kg] \text{ or } [lbs]$		Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

4th Edition, Rev 10

Section 6 – Weight and balance

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page 6 - 6

2.6. WEIGHING RECORD (II)

Model **P2006T** S/N:_____ Weighing no. ____ Date:_____

Datum: leading edge vertical

	[kg] or [lbs]		[m] or [ft]
Nose wheel weight	$\mathbf{W}_1 =$	Plumb bob distance LH wheel	$A_L =$
LH wheel weight	$W_L =$	Plumb bob distance RH wheel	$A_{R} =$
RH wheel weight	$W_R =$	Average distance $(A_L + A_R)/2$	A =
$W_2 = W_L + W_R =$		Plumb bob distance from nose wheel	B =

Empty weight $We = W_1 + W_2 =$

[kg] or [lbs]

$D = \frac{W_2 \cdot A - W_1 \cdot B}{We} = $ [m] or [ft]						
$D\% = (D / 1.339 \text{ m}) \times 100 =$ or $D\% = (D / 4.39 \text{ ft}) \times 100 =$						
Empty weight moment: M =	(D We) =	[<i>n</i>	$n \cdot Kg$] or [Ft · Lbs]			
Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature			

Maximum takeoff weight	$W_T =$	[kg] or [lbs]	Signature
Empty weight	We =	[kg] or [lbs]	
Max. useful load W _T - We	Wu =	[kg] or [lbs]	

4th Edition, Rev 10

Section 6 – Weight and balance

WEIGHTS AND C.G.

C.G. position can be defined by means of the chart below.

The pilot is responsible for ensuring the correct useful load loading.

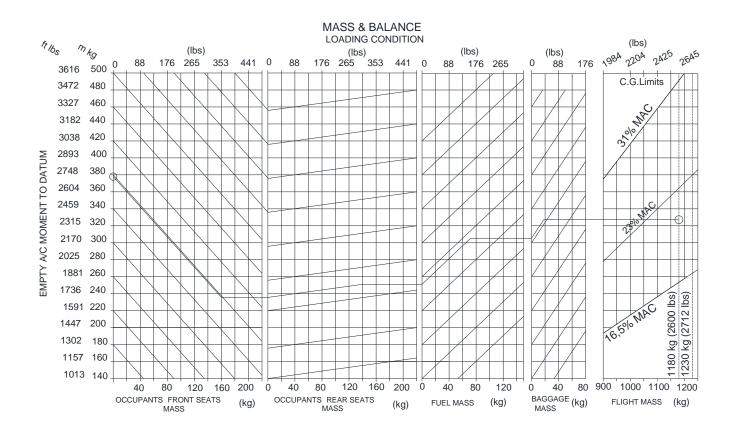


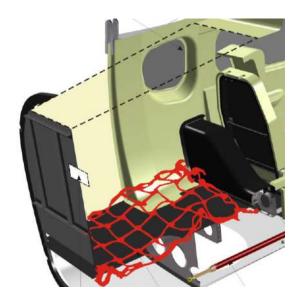
Figure 1

Example

A/C empty mass m	oment 378 kgm
A/C empty mass	790 kg
Occ. front seats	160 kg
Occ. rear seats	140 kg
Fuel	72kg
Baggage	18 kg
A/C T.O. weight	1180kg

4th Edition, Rev 0

Section 6 – Weight and balance


3. BAGGAGE LOADING

The baggage loading in the dedicated compartment must be carried out in accordance with diagram addressed on PAR. 03 and with C.G. excursion and weight limitations reported in Section 2.

Pilot is provided with a red tie-down net and snap fasteners allowing for securing the loads on the compartment floor.

Loading the baggage, make sure that you correctly stretched the net which must be secured to the four vertices of the floor.

4th Edition, Rev 0

Section 6 – Weight and balance

BAGGAGE LOADING

INTENTIONALLY LEFT BLANK

4. EQUIPMENT LIST

The following is a list of equipment which may be installed in the *P2006T*. The items marked with an "X" were installed on the airplane described at the beginning of the list and they are included in the Basic Empty Weight.

It is the owner's responsibility to retain this equipment list and amend it to reflect changes in equipment installed in this airplane.

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page 6 - 11

Εοι	JIPMENT LIST	AIRCRAFT S/N:		DATE:			
REF.		DESCRIPTION			INST	WEIGHT [kg]	Акм [m]
	<u>.</u>	INSTRUMENT	TS & AVIONICS		-		
A-1	2 nd airspeed indica	tor - UMA T6-311 - 200				0.37	-1.4
A-2	2 nd airspeed indica	tor – Mikrotechna 1116.B2B2				0.37	-1.4
A-3	2 nd attitude indicat	or - Kelly Manufacturing RCA26AK-12				1	-1.4
A-4	2 nd altimeter – Uni	ted Instruments 5934PM-3A84 01770028	-05			0.6	-1.4
A-5	2 nd altimeter - Mil	krotechna 1128.12B6				0.6	-1.4
A-6	2 nd altimeter – Mie	d-Continent 15035-01102				0.36	-1.4
A-7	2 nd altimeter – Mie	d-Continent 4200-10				0.73	-1.4
A-8	Turn and bank ind	icator – RCA 83 A-11				1.2	-1.4
A-9	Turn coordinator N	Mid Continent 1394T100-7Z or -14RB				0.81	-1.4
A-10	Mid-Continent MI	0302				0.73	-1.4
A-11	Garmin GNS-430	W GPS/WAAS COM/NAV				3	-1.4
A-12	Garmin GNS-530V	W GPS/WAAS COM/NAV				3.18	-1.4
A-13	Garmin GMA340	audio panel				0.8	-1.4
A-14	Garmin GMA347	or GMA 345 audio panel				0.8	-1.4
A-15	Garmin SL30 VHI	F COMM/NAV				1.3	-1.4
A-16	Garmin GTX328	Fransponder				1.9	-1.4
A-17	Garmin GTX330				1.5	-1.4	
A-18	Garmin GTX33 Tr	ansponder				1.5	-1.4
A-19	Garmin GTX345R	Transponder				1.5	-1.4
A-20	Becker BXP 6401	-2-(01) Mode S transponder				0.8	-1.4
A-21	Garmin GI106() V	/OR/LOC/GS Indicator				0.4	-1.4
A-22	Mid-Continent MI	O 200-306 VOR/LOC/GS Indicator				0.4	-1.44
A-23	Kelly Manufacturi	ng RCA15AK-() Directional Gyro				1	-1.4
A-24	ELT Adams Aviat	ion Artex ME406				0.9	0.8
A-25	ELT KANNAD 40	06 AF Integra or Compact				0.9	0.8
A-26	Garmin GMA 134	7/1360 audio panel				1.1	-1.4
							. <u></u>

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page 6 - 12

Εοι	UIPMENT LIST	AIRCRAFT S/N:			DATE:				
REF.		DESCRIPTION				INST	WEIGHT [kg]	Акм [m]	
	HONEYWELL B	endix/King KCS 55A Co	ompass System				•		
H-1	KI 525A Pictorial N	Navigation Indicator					1.53	-1.4	
H-2	KG 102A Direction	nal Gyro					1.95	1	
H-3	KA 51B Slaving C	ontrol and Compensator U	Jnit				0.1	-1.4	
H-4	KMT 112 Magneti	c Slaving Transmitter					0.15	2.2	
	HONEYWELL B	endix/King KR87 ADF S	System						
H-5	ADF KR87 receive	er					1.5	1	
H-6	Indicator KI 227						0.3	-1.4	
H-7	Indicator KI 229						1.3	-1.4	
H-8	Static inverter Mar	athon PC-50					2	1	
	HONEYWELL B	endix/King KN 63 DME	System						
H-9	Indicator DME KD	DI 572					0.4	-1.4	
H-10	Transceiver DME	KN 63					1.3	1	
	S-TEC Fifty Five	X Autopilot System							
S-1	Turn coordinator S	-TEC 6405-14L (Mid Cor	ntinent 1394T100-14RB)				0.81	-1.5	
S-2	PRGMR/CMPTR	01192-0-2TF					1.36	-1.4	
S-3	Roll servo 0105-5-	R9					1.31	-0.71	
S-4	Pitch servo 0107-1	1-P4					1.31	3.55	
S-5	Altitude Transduce	er 0111					0.2	-1.9	
S-6	Pitch Trim servo S	-TEC 0105-T11					1.3	2.8	
	Becker 3500 ADF System								
B-1	ADF Becker 3500	Receiver (RA3502)					1.0	0.92	
B-2	RMI Converter (A	C 3504–01)					0.75	0.92	
B-3	ADF Antenna (AN	3500)					1.7	-0.25	
B-4	AK-550-6 DC/DC	converter					1	-0.85	
	WX500 Stormsco	ре							
SS-1	Processor (includin	ng mounting tray) (805-11)	500-001)				1.10	2.51	
SS-2	Antenna NY163 (8	805-10930-001)					0.38	3.60	
	Garmin GTS 800	TAS							
T-1	Garmin GTS 800 T	TAS (011-01356-00)					4.75	1.30	
T-2	GA 58 Directional	Antennas (010-00720-00)					0.78	-0.30	
						ļ			
								·	
								L	

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page 6 - 13

EQUIF	MENT LIST	AIRCRAFT S/N:		DATE:			_
REF.		DESCRIPTION	ı		INST	WEIGHT [kg]	Акм [m]
			MISCELLANEOUS				
M1	Front LH seat GEV	VEN E5-01-003-T01 or E5-	01-007-T01 or E5-01-009-T03			9	-0.89
M2	Front RH seat GEV	VEN E5-01-004-T01 or E5-0	1-008-T01 or E5-01-010-T03			9	-0.89
M3	Rear LH seat GEV	EN E5-01-003-T01 or E5-0	1-007-T01 or E5-01-009-T03			9	0.23
M4	Rear RH seat GEV	'EN E5-01-004-T01 or E5-0	1-008-T01 or E5-01-010-T03			9	0.23
M5	Front LH Seat TE	CNAM 26-6-5100-001				11	-0.89
M6	Front RH Seat TE	CNAM 26-6-5100-002				11	-0.89
M7	Rear LH Seat TE	CNAM 210-10-5300-801				10	0.23
M8	Rear RH Seat TE	CNAM 210-10-5400-801				10	0.23
M9	Fire extinguisher -	Fire Fighting Enterprises Lt	1 BA51015-3			2	-1.5
M10	Fire extinguisher 1	H3R-Aviation RTA-600				0.8	-1.5
M11	Fire extinguisher A	MEREX A344T				1.04	-1.5
M12	First aid kit – DIN	13164				0.2	0.8
M13	Torch					0.15	-1.5
M14	Battery GILL G35	- 13Volt - 23Ah				12.2	3.7
M15	TABI-1800 sensor					31.0	-0.45
						Ī	
						ľ	
					1		

INTENTIONALLY LEFT BLANK

SEZIONE 7 – AIRFRAME and SYSTEMS DESCRIPTION

INDEX

1.	INTRODUCTION	3
2.	AIRFRAME	3
3.	POWERPLANT	9
4.	PEDESTAL CONTROLS	12
5.	CABIN OVER-HEAD PANEL CONTROLS	15
6.	INTERNAL LIGHTS	16
7.	EXTERNAL LIGHTS	17
8.	FUEL SYSTEM	19
9.	LANDING GEAR SYSTEM	21
10.	BRAKES	25
11.	VENTILATION	26
12.	CABIN HEAT	26
13.	SEATS AND SAFETY BELTS	26
14.	DOORS	27
15.	BAGGAGE COMPARTMENT	28
16.	PLACARDS	31
17.	INSTRUMENTS PANEL	37
18.	ELECTRICAL SYSTEM	40

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This section provides aircraft and systems description and operation.

2. AIRFRAME

2.1. WING

Each wing consists of a central light alloy torque box which carries all the wing bending, shear and torque loads; an aluminium leading edge is attached to the front spar while flap and aileron are hinged to the rear spar.

The torque box houses an integrated fuel tank and supports the engine mount.

Flap and aileron, respectively located inboard and outboard of wing and made up of light alloy, are constructed with a central spar to which front and rear ribs are jointed. Wrapped-around aluminium stressed skin panels cover all the structures. Steel alloy attachments connect left and right wing to each other.

Following figure shows the left wing fitted with the engine nacelle, fuel tank and composite winglet. Steel alloy attachments link left and right wing to each other.

Figure 1. – Left wing structure

2.2. FUSELAGE

The fuselage is constituted by a light-alloy semi-monocoque structure wrappedaround by stressed skin panels. Radome and stern fairing are of composite material. Cabin and baggage compartment floor is a warping of beams and keelsons supporting the seats guides and other components.

Two spar frames support on the top the wings attachments and on the bottom the *sponson* beans sustaining the main landing gear. The forward frame, to which radome is connected, supports a steel trestle to which the nose landing gear is connected.

The front and rear seats access occur by means of two doors located in the opposite sides of the fuselage; a ditching emergency exit is available on the top of the cabin. In tail cone, two spar frames support the horizontal and vertical empennages attachments.

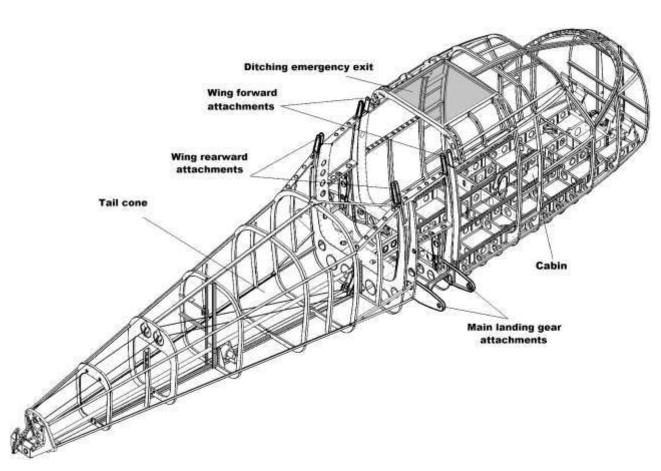


Figure 2. – Fuselage structure

4th Edition, Rev 0

Section 7 – Airframe and Systems description

AIRFRAME

2.3. EMPENNAGES

The vertical tail is entirely metallic: vertical fin is made up of a twin spar with aluminium alloy stressed skin. Rudder, providing directional control of the airplane, is made up of aluminium alloy.

The rudder is connected to the vertical tail at two hinge points. A trim tab system increases directional stability of the airplane.

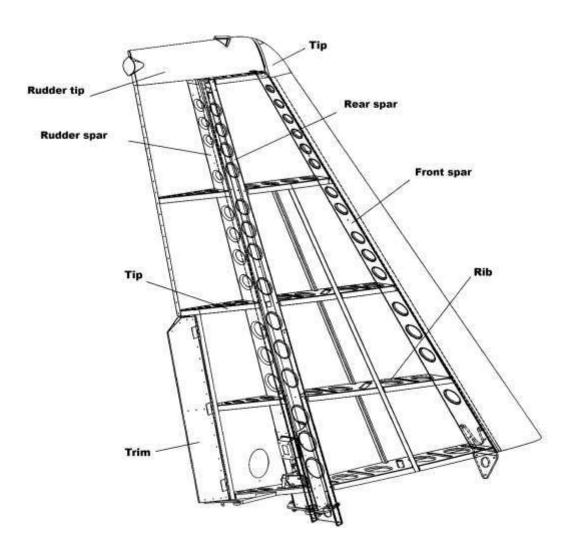


Figure 3. – Vertical empennage structure

4th Edition, Rev 0

Section 7 – Airframe and Systems description

The horizontal empennage is an all-moving type (stabilator); its structure consists of a twin spar to which front and rear ribs are jointed and it is covered by stressed aluminium alloy skin. The trim tab completes the assy.

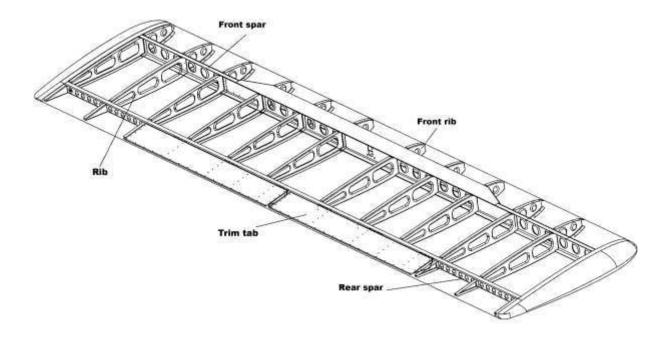


Figure 4. – Stabilator structure

2.4. FLIGHT CONTROLS

The main flight control system controls the airplane in three axes. All primary controls (ailerons, rudder and stabilator) are manually operated by a conventional control column and rudder pedals, pulleys, cables, bellcranks and rods.

The secondary flight controls consist of a two-axis trim system and a flaps system.

Complete dual controls are provided for pilot and co-pilot.

Longitudinal control acts through a system of push-pull rods connected to the control column and moving the stabilator whose anti-tab winglet works also as trim tab. Autopilot pitch servo (if installed) is connected to the push-pull rods system through driving cables.

Longitudinal trim is performed by a small tab positioned on the stabilator and manually operated via a control wheel positioned between the two crew seats. As optional, it is available an electrically operated longitudinal trim which it is also controlled by the autopilot system, when installed.

Trim position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

Ailerons control is of mixed type with push-rods and cables; a cable control circuit is confined within the cabin and it is connected to a pair of push-pull rod systems positioned in each main wing which control ailerons differentially.

The U-shaped control wheels, hinged on the top of the control column, control the ailerons. Control wheel motion is transferred to the ailerons through a cable loop, up to the interconnecting rod linking the two push-pull rod systems which finally transmit the motion to the ailerons.

When either aileron control wheel is rotated, the crossover cable rotates the other control wheel.

The left aileron has a trim tab adjustable on ground: its deflection allows for lateral trimming of the airplane.

Both flaps are extended via a single electric actuator controlled by a switch on the instrument panel. Flaps act in continuous mode; the analogue indicator displays three markings related to 0° , takeoff (T/O) and landing (FULL) positions.

An aural warning is generated whenever the flaps are lowered to the FULL position and the landing gear is not down-locked.

Rudder is operated through a cable system. A rudder trim tab allows aircraft directional trimming, especially in case of OEI operation: it is electrically operated via a switch located on the central console placed between crew seats.

Its position is monitored by an indicator on the instrument panel. A trim disconnect toggle switch is provided.

INTENTIONALLY LEFT BLANK

3. POWERPLANT

P2006T is equipped with two four-cylinder four-stroke Rotax 912S engines of 98hp (73kW) each, both rotating clockwise. These are partially liquid cooled and they feature an integrated reduction gear driving constant speed propellers with pitch feathering devices.

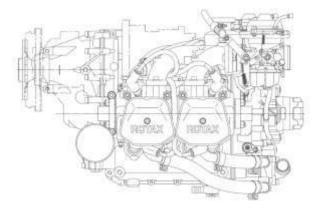


Figure 5. – Rotax 912S

Cooling system is designed for liquid cooling of the cylinders heads and ram-air cooling of the cylinders. The liquid system is a closed circuit with an overflow bottle and an expansion tank.

The coolant flow is forced by a water pump, driven from the camshaft, from the radiator to the cylinder heads. From the top of the cylinder heads the coolant passes on to the expansion tank (item 1, Figure below). Since the standard location of the radiator (2) is below engine level, the expansion tank, located on top of the engine, allows for coolant expansion.

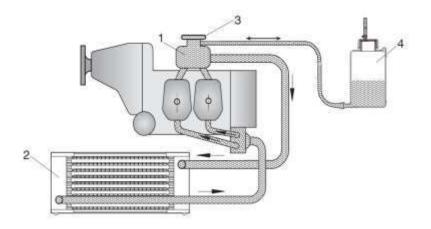


Figure 6. – Liquid cooling system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description POWERPLANT

The expansion tank is closed by a pressure cap (3) fitted with pressure relief valve and return valve. At temperature rise and expansion of the coolant, the pressure relief valve opens and the coolant will flow via a hose at atmospheric pressure to the transparent overflow bottle (4). Once cooled down, the coolant will be sucked back into the cooling circuit.

The engine is provided with a dry sump forced lubrication system with an oil pump with integrated pressure regulator. A thermostatic valve regulates the oil flow to the heat exchanger (oil radiator) on the basis of oil temperature: this allows the engine starting in cold conditions.

The oil tank is installed behind the firewall protected from heat sources. Some holes on the bracket structure allow for air ventilation

The reservoir is fitted with a dipstick; a hose, immediately located beneath the filler cap, allows for oil relief discharged in a safe zone in the cowling, far from exhausts and other heat sources.

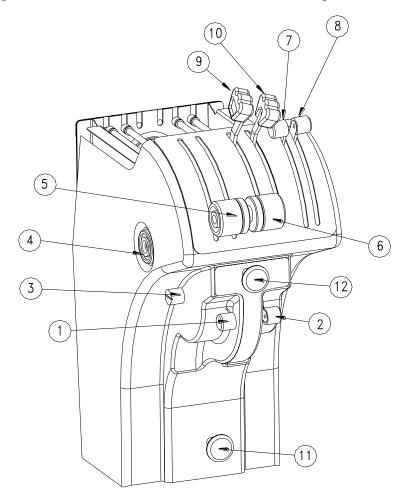
Following powerplant instruments are provided:

- ▶ LH and RH RPM Indicator
- > LH and RH Manifold Pressure Indicator
- LH and RH Oil Pressure Indicator
- LH and RH Oil Temperature Indicator
- > LH and RH Cylinder Head Temperature Indicator

3.1. ENGINE FEATURES

Manufacturer	Bombardier-Rotax GmbH	
Model	912 S3	
Certification basis	FAR 33, Amendment 15	
Type Certificate	EASA TCDS no. E.121 dated 1st April 2008	
Engine type	4 cylinders horizontally opposed with 1352 c.c. of overall displacement, liquid cooled cylinder heads, ram-air cooled cylinders, two carburetors, integrated reduction gear box with shock absorber.	
Maximum power	73.5 kW (98.6hp) @ 5800 rpm –5 min. maximum	
(at declared rpm)	69.0 kW (92.5hp) @ 5500 rpm (continuous)	

3.2. PROPELLER FEATURES


Manufacturer	MT Propeller	
Type certificate	LBA 32.130/086 (MTV-21 series)	
Model	MTV-21-A-C-F/CF178-05	
Blades/hub	2 wood/composite blades, aluminium hub	
Diameter	1780 mm (no reduction allowed)	
Туре	Variable pitch hydraulically controlled	

3.3. PROPELLER GOVERNOR FEATURES

Manufacturer	MT Propeller
Model	P-875-12
Туре	Hydraulic

4. PEDESTAL CONTROLS

Following picture shows the controls installed on the central pedestal.

Figure 7. – Pedestal controls

No	Description
1 and 2	Choke control
3	Choke friction knob
4	Upper levers friction knob
5-6	LH and RH Throttle lever
7-8	LH and RH Carburetor Heating lever
9-10	LH and RH Propeller Pitch Control lever
11	Parking brake
12	Windshield defrost control knob

Section 7 – Airframe and Systems description PEDESTAL CONTROLS

NOTE

Aircraft not embodying the Design Change 2006/66 "New Powerplant control setting layout" or the SB 039-CS "P2006T New powerplant controls layout" feature a different pedestal levers layout: propeller and carb. heat levers position are inverted.

It is possible to adjust the throttle, propeller and carburettor heat levers friction by appropriately tightening the friction knob located on the central console.

A similar device is provided for engine choke controls.

Carburettor heat control knobs are located between throttle and propellers levers; when the knobs are fully pulled backwards, carburettors receive maximum hot air.

During normal operations, the knobs are fully forward set (carburettors heating set to OFF).

The console houses also the parking brake and windshield defrost control knobs.

INTENTIONALLY LEFT BLANK

5. CABIN OVER-HEAD PANEL CONTROLS

Following picture shows the controls installed on the cabin over-head panel.

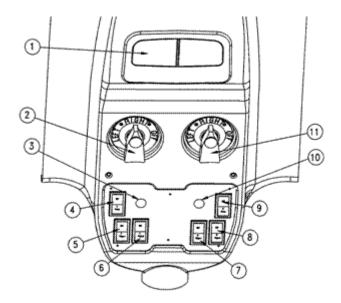


Figure 8. – Cabin head panel controls

No	Description	
1	Cabin Light	
2	LH Fuel selector valve	
3	LH Electric Starter	
4	LH electric fuel pump	
5	LH Engine ignition 1	
6	LH Engine ignition 2	
7	RH Engine ignition 1	
8	RH Engine ignition 2	
9 RH electric fuel pump		
10 RH Electric Starter		
11 RH Fuel selector valve		

Section 7 – Airframe and Systems description CABIN OVER-HEAD PANEL CONTROLS

6. INTERNAL LIGHTS

Internal lights system is composed by following equipment:

• Cabin light, providing lighting for crew and passengers compartment;

• **Instruments lights**, which in turn are composed by three sub-systems each one fitted with dimming device:

- Switches built-in lights
- Avionics lights
- Cockpit lights
- Emergency light

The **cabin light** is a ceiling light, fitted with control switches, located on the overhead panel in correspondence of the crew seats.

About the **instrument lights** (controlled by a switch on the RH instrument panel), the switches built-in lights concern the instrument panels switches lighting, the avionics lights concern the avionic equipment lighting and the cockpit lights concern two lights located on the over-head panel illuminating LH and RH instrument panels (see Figure below).

All above mentioned lights are supplied by the battery bus apart from the **Emer-gency light** which is directly connected to the battery. It is a five-leds light located in the over-head panel (see Figure below) controlled by a switch installed on the LH breakers rack.

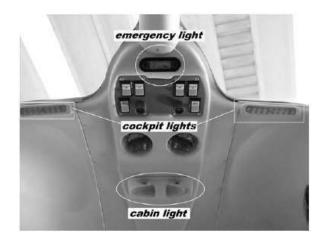


Figure 9. – Over-head panel lights arrangement

7. EXTERNAL LIGHTS

External lights system consists of the following equipment (see Figure below):

• **NAV Lights**: they provide, by means of three position lights, the aircraft flight direction identification.

• **Strobe Lights**: they provide aircraft identification to prevent collision. They are located, like the above mentioned NAV lights, on the winglets and on the top of the vertical fin.

• **Taxi Light**: supports taxi maneuvering on the ground at night. It is installed on the left wing leading edge.

• Landing Light: provides ground reference information during final approach, touchdown, ground roll and take off and illuminates any major obstructions in the airplane approach glide path or on runway at night. It is installed on the left wing leading edge.

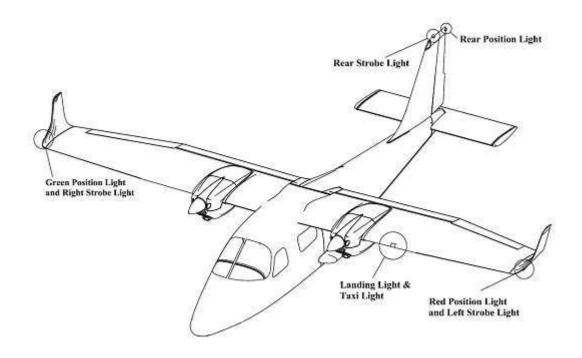


Figure 10. – External lights arrangement

All mentioned lights, whose circuits are protected by dedicated breakers, are activated by the related switches on the right instrument panel: see below.

Figure 11. – Lights switches panel

8. FUEL SYSTEM

Fuel system consists of two integrated tanks inside the wing torque boxes and fitted with inspection doors.

Each fuel tank has a capacity of 100 litres and is equipped with a vent valve (its outlet is located on the lower wing skin) and a sump fitted with a drain valve for water/moisture drainage purposes.

An electric fuel pump feeds the pertinent engine in case of engine-driven pump failure. The fuel Gascolator (a sediment-filter bowl) is located beneath the engine nacelle, between the fuel tank and the electrical pump, in correspondence of the fuel system lowest point. It is fitted with a drain valve which allows for the overall fuel line drainage.

Fuel quantity indicators and fuel pressure indicators for each engine are located on the RH instrument panel.

In normal conditions, to supply fuel to engines, each engine pump sucks fuel from the related tank; crossfeed is allowed by fuel valves located on the front spar and controlled by Bowden cables from the fuel selectors located on the cabin overhead panel.

Left fuel selector manages the left engine feeding, allowing fuel supply from the left fuel tank or from the right one (crossfeed).

Right fuel selector manages the right engine feeding, allowing fuel supply from the right fuel tank or from the left one (crossfeed).

Each selector can be set in OFF position only pulling and simultaneously rotating the lever: this avoids an unintentional operation.

Use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

System schematic is shown on the following Figure.

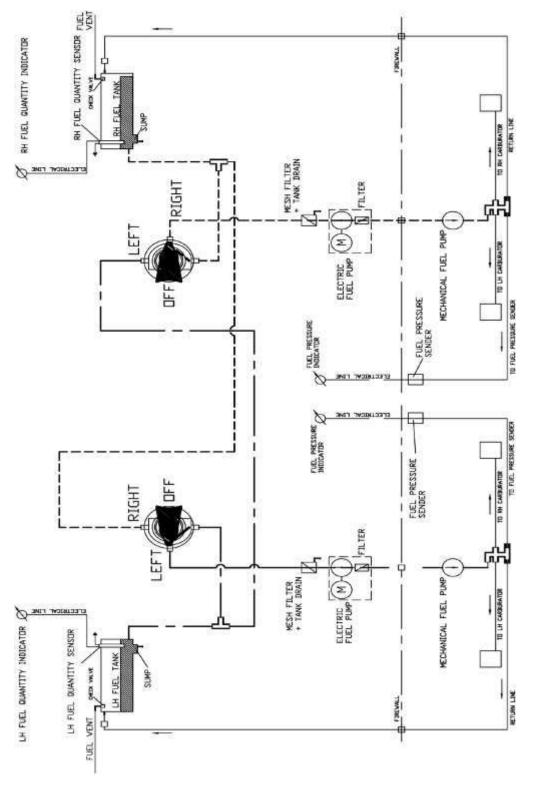
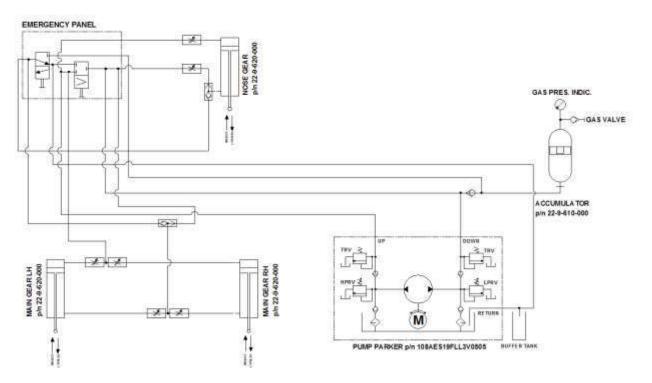


Figure 12. – Fuel system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description

FUEL SYSTEM


9. LANDING GEAR SYSTEM

The landing gear retraction system is of electro-hydraulic type, powered by a reversible pump which is electrically controlled by the LG control knob located on the LH instrument panel and by the legs position micro switches: these ones allow for detecting landing gear "down-locked" and "up" positions and for alerting the pilot by aural means should the approach and landing configuration be incorrect, in terms of flaps/throttle levers/landing gear position, in order to avoid an unintentional gear-up landing.

The system operates in two modes: normal and emergency.

Normal operation provides gear extension and retraction by means of hydraulic jacks. Gears extension is helped by gravity also.

Emergency operation only provides landing gear extension by means of a hydraulic accumulator which discharges pressurized oil in the above mentioned jacks.

HYDRAULIC SCHEMATIC DIAGRAM

Figure 13. LG hydraulic system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description LANDING GEAR SYSTEM

Hydraulic oil, contained in an integrated reservoir located inside the Hydraulic Power Pack, is pressurized by a reversible electric pump: as the LG control knob is placed in either the UP or DOWN position, the pump directs the fluid through the related pressure line toward each hydraulic jack.

In order to prevent an inadvertent LG retraction, the control knob must be pulled before being pushed upward for UP command.

The emergency hydraulic accumulator is used for the landing gear extension: normal extension line and emergency extension line converge in correspondence of the shuttle valves (two valves: the first one for NLG and the second one for MLG emergency operation).

The emergency accumulator nitrogen pressure indicator is located on the tail cone, left side; on ground, a red push-button located beneath the pressure indicator allows the electrical pump for charging the accumulator should the nitrogen pressure be below the lower limit indicated on the placard.

Emergency extension is controlled by two distributors located on the cabin floor, under a removable cover in correspondence of the pilot seat.

The LG indication system is electrical and it is composed by the following main components:

- UP/DN limit micro-switches
 leg position lights, 3 green
- ➤ transition light, 1 red
- \succ pump light, 1 amber
- \succ push to test

(6 couples, 2 for each leg)(turned ON when the pertinent leg is extended and locked and located on the LH instrument panel)(turned ON during transition phases)(GEAR PUMP ON caution amber light turned ON when the pump is electrically supplied)(for landing gear red and green lights operational check)

The three green lights illuminate only when the respective gear is "down-locked"; the red light indicates the gear is in transit "up" or "down" and the amber caution light GEAR PUMP ON indicates that the pump is electrically supplied.

The red transition light extinguishes only when all the three gear legs are "downlocked" or they are "up" while the amber caution light extinguishes only when the electrical pump is "off".

The Up/Down limit switches control the LG lights lighting and pump operation on the basis of LG configuration set by the pilot through the LG control knob.

A "push to test" button is used to check that the landing gear position lights are operating.

A warning horn alerts the pilot when the LG control knob is in UP position and at least one of the two throttle levers and/or flaps are respectively set to idle and to LAND position.

During emergency extension, LG position lights work as per normal extension mode: for this reason the LG control knob must be set on DOWN position before starting the emergency procedure.

IMPORTANT

After each emergency landing gear extension, apply the restoration procedure described in the AMM.

INTENTIONALLY LEFT BLANK

10. BRAKES

The A/C is provided with an independent hydraulically actuated brake system for each main wheel. A master cylinder is attached to each pilot/co-pilot's rudder pedal: see schematic below.

Hydraulic pressure, applied via the master cylinders, enters the brake via lines connected to an inlet fitting on the wheel brake caliper.

A parking brake valve, mounted in correspondence of the cabin floor and operated by a knob on the cockpit central pedestal, intercepts the hydraulic lines, once the system is pressurized, to hold the brake assemblies linings tightened round the main wheels brake discs.

Brakes can be operated from both pilot's and co-pilot's pedals: a single vented oil reservoir feeds the pilot side master cylinders which are connected, via hoses, with the co-pilot's side ones.

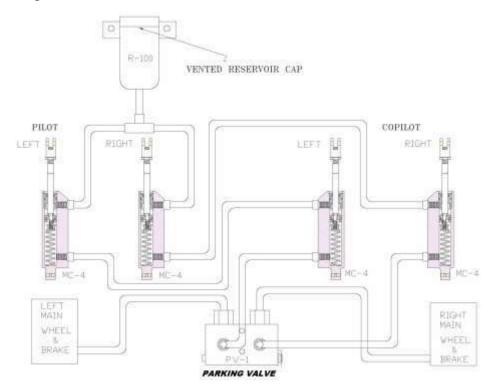


Figure 14. Brake system schematic

On the ground, when a pedal is pushed to steer the airplane, do not operate the opposite toe brake until the pedals are back aligned again. This prevents pedals mechanism from being damaged.

Section 7 – Airframe and Systems description BRAKES

11. VENTILATION

If required, pilot allows for ram-air entering the cabin via the two outlet ports respectively located on the left and right side of the instruments panel. Other two ram-air ventilation outlets are located on the cabin head, in the passengers' zone.

12. CABIN HEAT

The cabin heating system utilizes hot air coming from engines heat exchangers: here cold ram-air is warmed by engine exhaust gases and then it is routed to the heating system hoses.

The cabin heat control knobs are positioned on the lower side of the LH instrument panel; when knobs are fully pulled, cabin receives maximum hot air.

Left knob controls the warm air from LH engine heat exchanger, right knob controls the warm air from RH engine heat exchanger.

Crew heating system outlet ports are located on the cabin floor, near the pedestal; for passengers zone it is provided an outlet port on the cabin head.

Windshield defrost is operated via a knob positioned on the pedestal: when knob is pulled the hot air flow for crew heating is deviated to the windshield.

13. SEATS AND SAFETY BELTS

In correspondence of the seats, three fitting points safety belts are provided; belt adjustment is via the sliding buckle located on the belt metal hook.

Seats are built with light alloy tube structure and synthetic material cushioning. It is possible to perform following seat adjustments:

Horizontal – pulling the lower front lever and sliding the seat

Vertical - operating the lever located on the outward seat side

Seat back inclination – unlocking it via the lateral knob

These adjustments ensure the crew and passengers comfort.

14. DOORS

The cabin main door is located forward, on the left side of the fuselage while the emergency exit (passenger door) is located aft, on the right side of the fuselage.

On the top of the cabin it is located the ditching emergency exit: see figure below.

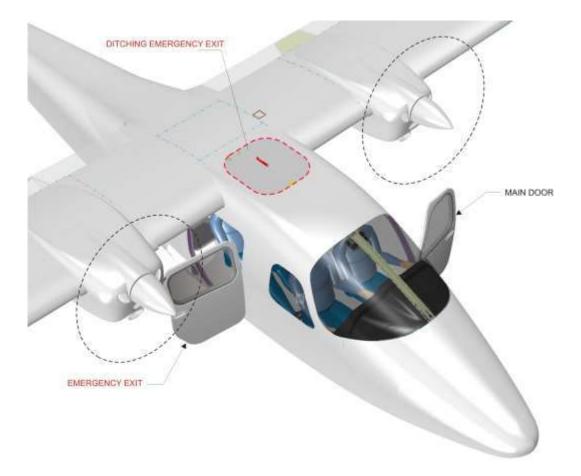


Figure 15. Doors location

Being the main door located in correspondence of the propeller disc, its operation is limited to the engine shut-down condition.

In fact, in order to prevent crew injuries, an electro-mechanical device locks the door latch when left engine runs. A pressure switch senses engine oil pressure and allows for electrical supply to a solenoid which engages the door lock mechanism.

This prevents the latch opening when left engine runs but, if needed, the device can be also manually by-passed operating either from the door inside panel or from outside. Instructions are reported on the placards near the by-pass lever, located in correspondence of the latch: to unlock it is necessary to push and hold the red tab down, after that the door can be opened operating the handle.

After engine shut-down, the pressure drop can have a certain delay, preventing the door from being opened by normal means: do not force the handle but operate the override system above mentioned.

In any case, the electric lock becomes disengaged after a complete loss of the electric power.

Two switches engage respectively when the door and the latch are closed. Should one or both switches be released, the MAIN DOOR OPEN warning light is turned ON.

The emergency exit is fitted with the same safety device: in this case the pressure switch allowing for solenoid operation is activated from right engine oil pressure line; should be the door "open" or "closed and unlocked", the REAR DOOR OPEN warning light is turned ON.

Any voluntary operation of the manual by-pass solenoid lock causes related door warning light is turned on.

The ditching emergency exit is manually operated turning the handle and pushing outward the door.

The yellow fluorescent painted handle, which can be operated also from outside, is fitted with a safety wire assuring removal effortlessness. When the door is open, it stays connected to the fuselage by means of two cables which allow for door opening forward.

15. BAGGAGE COMPARTMENT

The baggage compartment is located behind the passengers' seats. The baggage must be uniformly distributed on the floor and the weight cannot overcome 80kg. Make sure that the baggage is secured before the flight.

INTENTIONALLY LEFT BLANK

INTENTIONALLY LEFT BLANK

16. PLACARDS

In addition to the limitation placards reported on Section 2, following placards are installed on the aircraft.

Additionally, nearby the placards listed below (English language), directly-translated placards in the language of the country in which the airplane is registered can be installed, when required by the specific NAA.

Description	Placard	Place
ELT equipment location	ELTHERE	Baggage compartment, right side
First Aid Kit location	FIRST AID KIT	Baggage compartment, aft cover panel
Fire extin- guisher loca- tion		Cockpit floor, pilot side
Emergency gear extension compartment location	PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS	Removable cap

Description	Placard	Place
Emergency gear extension instructions	EMERGENCY OPERATIONS FIRST DISCHARGE ON	Emergency distribu- tors compartment
Alternate static port location	ALTERNATE STATIC PORT on the pedestal right side	Central pedestal, left side
Alternate static port operating instructions	ALTERNATE STATIC PORT	Central pedestal, right side
Static ports lo- cation	STATIC PORT KEEP CLEAN	Static ports: fuselage - both sides
Battery com- partment loca- tion	OPEN HERE 1/4 TURN BATTERY INSIDE	Fuselage tail, left side
EXT power connection: socket sche- matic and in- structions	EXT POWER CONNECTION (MASTER OFF) () () () () () () () () () () () () ()	Fuselage tail, left side

4th Edition, Rev 0

Section 7 – Airframe and Systems description

Description	Placard	Place
Landing gear hydraulic ac- cumulator: low pressure limit	LOW PRESSURE LIMIT	LG hydraulic com- partment cap (fuselage tail, left side)
LG hydraulic compartment location	LANDING GEAR HYDRAULIC COMPARTMENT	Fuselage tail, left side, in correspondence of LG hydraulic com- partment cap
Towing limita- tions	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	Nose LG forward door
Stabilator ex- cursion range	5° 0° 16°	Fuselage tail, left side, in correspondence of the stabilator leading edge
Aircraft grounding	CONNECT THE AIRCRAFT TO ELECTRICAL GROUND BEFORE REFUELING	Close to the fuel filler cap
Engine coolant expansion tank location	COOLANT	Engine nacelle top side

4th Edition, Rev 0

Section 7 – Airframe and Systems description

Description	Placard	Place
Steel boards: a/c identifica- tion marks	• I-TELT • • TECNAM srl • A/c: P2006T • S/N: 001 T.C.: n° EASA X	Fuselage tail, left side
	(Sample)	
Main LG tires inflation pres- sure values	TIRES INFL. PRESSURE MAIN LG 2.3bar/33psi	MLG leg, LH and RH
Nose LG tire inflation pres- sure values	TIRES INFL. PRESSURE NOSE LG 1.7bar/24psi	Nose LG fork

INTENTIONALLY LEFT BLANK

4th Edition, Rev 0

INTENTIONALLY LEFT BLANK

4th Edition, Rev 0

17. INSTRUMENTS PANEL

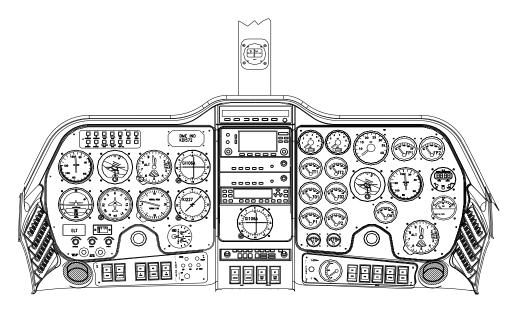
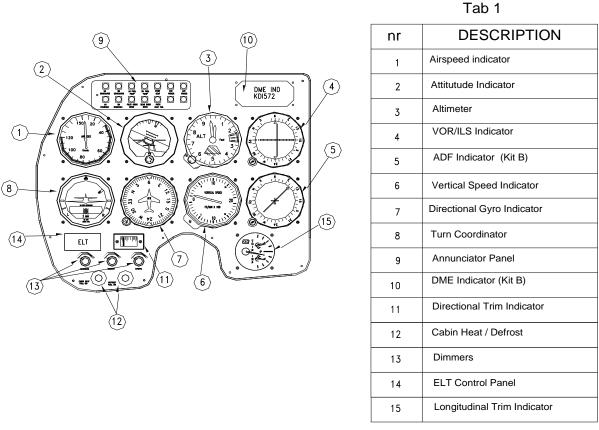
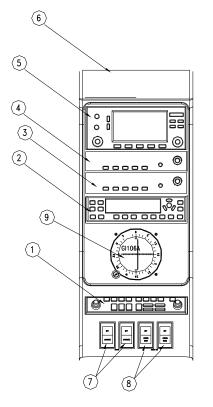


Figure 16. – Instruments panel (typical layout)




Figure 17. – LH Instruments panel (typical layout)

4th Edition, Rev 0

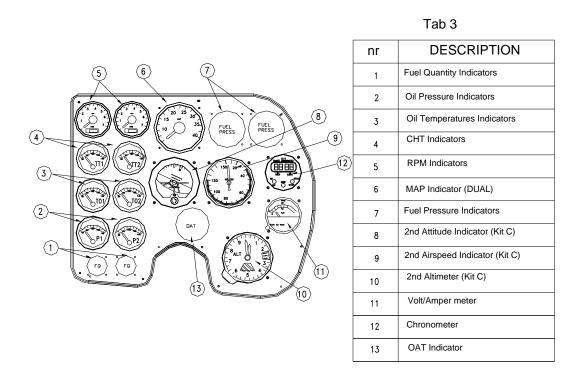
Section 7 – Airframe and Systems description

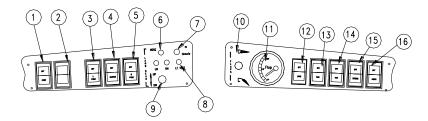
INSTRUMENTS PANEL

ECNAM P2006T - Aircraft Flight Manual Page 7 - 38

Tab 2					
nr	DESCRIPTION				
1	Audio Panel				
2	Transponder				
3	ADF (Kit B)				
4	COMM/NAV SL30 (Kit A)				
5	GPS/NAV/COMM GNS 430				
6	Available				
7	Avionic Switches				
8	Cross Bus Switches				
9	VOR/ILS Indicator				

Figure 18. – Central instruments panel (typical layout)




Figure 19. – RH Instruments panel (typical layout)

4th Edition, Rev 0

Section 7 – Airframe and Systems description

INSTRUMENTS PANEL

ECNAM P2006T - Aircraft Flight Manual Page 7 - 39

Tab 4

nr	DESCRIPTION
1	Pitot Heating Switch
2	Available
3	LH Field
4	Battery Master Switch
5	RH Field
6	Landing Gear lights
7	Unsafe Light
8	Light Test
9	Landing Gear lever

DESCRIPTION
Flap Control
Flap Indicator
Landing Light Switch
Taxi Lights Switch
Position Lights Switch
Strobe Lights Switch
Instrument Lights Switch

Figure 20. – Switches panels

Section 7 – Airframe and Systems description INSTRUMENTS PANEL

4th Edition, Rev 0

18. ELECTRICAL SYSTEM

Primary DC power is provided by two engine-driven generators which, during normal operations, operate in parallel.

Each generator is rated at 14,2-14,8 Vdc, 40 Amp, and it is fitted with an integrated regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by generator failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 38-Ah in 20h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right generator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Generator bus
- RH Generator bus
- LH Avionic bus
- RH Avionic bus

The distribution system operates as a single bus with power being supplied by the battery and both generators but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions are connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both generators. This allows the bus for remaining active also in case of two independent faults in the supply paths.

4th Edition, Rev 0

The following loads are connected to the battery bus:

Battery Bus					
Audio Panel					
VHF COMM 1					
NAV 1					
GPS					
LH and RH Fuel electrical pump					
LH and RH Fuel pressure					
LH and RH Fuel quantity					
LH and RH oil pressure					
LH and RH oil temperature					
LH and RH CHT					
LH and RH RPM indicator					
LH Attitude indicator					
Cabin lights					
Cockpit lights					
Switches built-in lights					
Avionics lights					
Annunciator Panel					
Strobe lights					
Flaps					
Doors pressure switches					
Engine hour meter (2 units)					
OAT					
Turn coordinator					
LG hydraulic pump					
LG indicating & control system					
LH and RH Fire detector 12V cabin electrical power sockets (2 units)					

In addition, directly on the battery, the following devices are connected:

• Emergency back-up attitude indicator (RH attitude indicator – usually supplied from RH generator bus), when installed;

- Emergency Light
- Chronometer

The first two devices are controlled by the pertinent switches located on the LH breakers rack.

The other loads are so divided among following busses:

LH GEN Bus	LH Avionic Bus				
Pitot heat	DME				
Landing light	Transponder				
Taxi light	Encoder altimeter				

RH GEN Bus	RH Avionic Bus
NAV lights	ADF
Rudder trim	COM 2
Stall warning	NAV 2
RH attitude indicator	A/P (*)
	A/P Pitch Trim (*)

(*) if installed

On the central pedestal (see Figure below) there are seven switches disposed on two rows: on the first row there is the MASTER SWITCH which allows for connecting, through the battery relay, the battery to the battery bus.

LH and RH FIELD switches control the pertinent generator: setting the switch to OFF puts the pertinent generator off-line.

In correspondence of the second row there are 4 switches LH/RH AVIONIC and LH/ RH CROSS BUS.

Figure 21. Central pedestal switches console

The first two allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

4th Edition, Rev 0

The second ones allow, through a relay, for realizing the parallel connection between the pertinent generator bus and the battery bus. Setting these ones to OFF, the pertinent generator bus (and related avionic bus supplied) is separated from the battery bus and from opposite generator bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

4th Edition, Rev 0

TECNAM P2006T - Aircraft Flight Manual Page 7 - 44

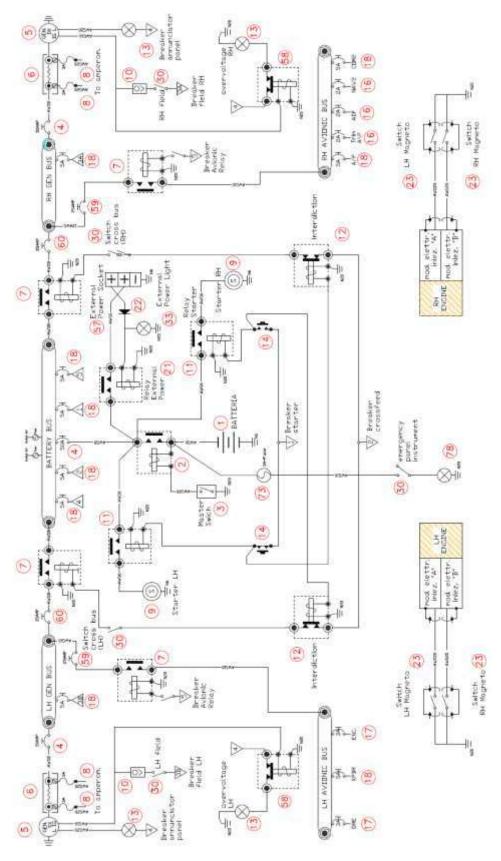


Figure 22. – Electrical system schematic

4th Edition, Rev 0

Section 7 – Airframe and Systems description

ELECTRICAL SYSTEM

TECNAM P2006T - Aircraft Flight Manual Page 8 - 1

SECTION 8 – AIRCRAFT CARE and MAINTENANCE

INDEX

1. Int	troduction	3
2. Ins	spection intervals	3
3. Ai	rcraft changes or repairs	3
4. Ma	aintenance	4
4.1.	Refuelling	
4.2.	Oil level control	
4.3.	Landing gear tires pressure control5	
5. Gr	ound towing, parking and mooring	6
5.1.	Towing	
5.2.	Parking	
5.3.	Mooring	
6. Cl	eaning	B
6.1.	Windows	
6.2.	External surfaces	
6.1	Propeller	
6.2	Engine	
6.3	Internal surfaces9	
7. Ice	e removal	9

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

This Section deals with main care and maintenance operations for *P2006T*.

Refer to Aircraft Maintenance Manual to establish the controls / inspections / maintenance tasks (scheduled and unscheduled) to be performed.

2. INSPECTION INTERVALS

Scheduled inspections must be performed in accordance with the instructions addressed on the Aircraft Maintenance Manual. Independently from the aircraft flight hours, an annual inspection has to be performed.

The first scheduled engine inspection must be carried out after first 3/6 hours. All required inspections are reported in the Aircraft Maintenance Manual.

As far as the scheduled/unscheduled engine maintenance is concerned, refer to the engine manufacturer Maintenance Manual.

Unscheduled inspections/maintenance tasks are necessary when one or more of following conditions occur:

- 1. Emergency landing
- 2. Breaking / damage of propeller (or in case of simple impact)
- 3. Engine fire
- 4. Lights damage
- 5. Any type of damage or failure

3. AIRCRAFT CHANGES OR REPAIRS

Aircraft changes or repairs must be performed in accordance with Aircraft Maintenance Manual and only by TECNAM authorized personnel.

4. MAINTENANCE

4.1. **REFUELLING**

- Do not perform aircraft refuelling near flames, sparks or similar.
- Avoid fuel contact with the skin: a skin corrosion could occur.
- Make sure that a fire extinguisher is available nearby during refuelling operations.

- Make sure that overall aircraft instrumentation is turned OFF before performing the refuelling.
- Do not operate switches and/or pushbuttons inside the aircraft during refuelling operation; make sure that crew left the aircraft before performing refuelling.
- Make sure that the aircraft is electrically connected to the ground.

4.2. OIL LEVEL CONTROL

- 1. Open the inspection cap on the engine nacelle
- 2. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank, or let the engine idle for 1 minute. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank.
- 3. Clean the dipstick and soak it in the reservoir
- 4. Remove dipstick and read oil level
- 5. If required, replenish oil: oil level should be between max. and min. mark of the oil level dipstick
- 1. Close the inspection cap
- 2. Repeat the procedure for the other engine

4.3. LANDING GEAR TIRES PRESSURE CONTROL

- 1. Remove wheel dust cover (on main LG wheels)
- 2. Unscrew the tire cap
- 3. Connect a gauge
- 4. Read the pressure value
- 5. If required, rectify the pressure (nose tire 1.7 Bar / 24 Psi, main landing gear tires 2,3 Bar / 33 Psi)
- 6. Fit the tire cap
- 7. Install wheel dust cover (on main LG wheels)

5. GROUND TOWING, PARKING AND MOORING

5.1. Towing

When the a/c is moved on the ground, either manually or by towing, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

5.2. PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake
- 3. Install control locks
- 4. Secure pilot control wheel by wrapping the seat belt around it

Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 5.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

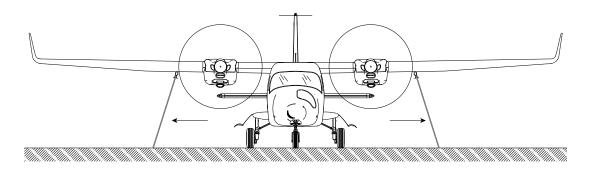
5.3. MOORING

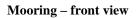
The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

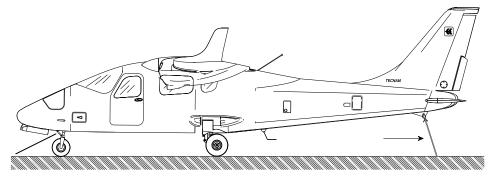
Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind, if practical
- 2. Center nose wheel and engage parking brake and/or use the wheel chocks




Do not engage the parking brakes at low ambient temperature, when an accumulation of moisture may cause the brakes to freeze, or when they become hot from severe use. In these cases use wheel chocks.


- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure that flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks
- 7. Install protective plugs
- 8. Close and lock cabin doors.
- 9. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)

Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring – side view

6. CLEANING

Aircraft surface must be kept clean to ensure expected flight performance. Excessively dirty surfaces can affect normal flight conditions.

6.1. WINDOWS

For windows cleaning, it is allowed the use of acrylic products employed for glass and Plexiglas surfaces cleaning.

6.2. EXTERNAL SURFACES

Aircraft surface is cleaned with soapy water; they are not allowed solvents or alcohol based products. Died insects must be removed using hot water. It is advisable to avoid outside aircraft parking for long periods; it is always convenient to keep the aircraft in the hangar.

6.1 **PROPELLER**

To preserve its functionality avoiding wear and corrosion, the propeller manufacturer uses, for external surface painting, an acrylic paint which is resistant to all solvents. In any case it is advisable to clean the propeller using exclusively soapy water.

6.2 ENGINE

Engine cleaning is part of the scheduled maintenance. Refer to the engine manufacturer Maintenance Manual for operating and for planning its cleaning.

6.3 INTERNAL SURFACES

Interiors must be cleaned with a rate of 3 to 6 months. Any object present in the cabin (like pens, lost property, maps etc) must be removed.

The instrumentation as a whole must be cleaned with a humid cloth; plastic surfaces can be cleaned with suitable products.

For parts not easily accessible, perform cleaning with a small brush; seats must be cleaned with a humid cloth.

7. ICE REMOVAL

Anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

INTENTIONALLY LEFT BLANK

SECTION 9 – SUPPLEMENTS

1. INTRODUCTION

This Section concerns the supplemental manuals of additional (or optional) instrumentation equipping the P2006T.

Supplements applicability is reported in two dedicated columns of the list.

- "A" identifies the applicability to airplanes with analogue instruments.
- "G" identifies the applicability to airplanes embodying one of the following Design Changes:
 - MOD2006/002 "Garmin G950";
 - o MOD2006/271 "Garmin G1000 NXi".

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual

2. SUPPLEMENTS LISTS

	SUPPLEMENTS	і іст					
Sup.	SUIT LEMENTS	Rev.		Applicablity		Applied	
No.	Title	No.	Date	Α	G	Yes	No
A1	Garmin GNS-430W Gps/VHF Comm/Nav	0		X			
A2	Garmin SL30 VHF Comm/Nav	0		Х			
A3	Garmin GMA 340 Audio Panel	0		Х			
A4	Garmin GTX 328Mode S Transponder	0		Х			
A5	Bendix-King Honeywell KR 87 ADF System	0		Х			
A6	Bendix-King Honeywell KN 63 DME System	0		Х			
A7	KCS 55A Compass System	0		Х			
A8	Garmin GNS-530W Gps/VHF Comm/Nav	0		Х			
A9	Garmin GTX 330 Mode S Transponder	0		X			
A10	Garmin GMA 347 Audio Panel	0		Х			
A11	Becker BXP 6401-2-(01) Mode S transponder	0		Х			
A12	S-TEC Fifty Five X Autopilot	0		Х			
A13B	GTN 650 equipment	0		Х			
A14	Engine starting battery	0		Х			
A15	Power supply from built-in generators	0		Х			
A16	AFM Supplement for CIS countries operators	0		Х			
A17	Brazilian AFMS	0		Х			
A18	Chinese AFMS	0		Х			
A19	Increased MTOW - 1230 KG (MOD 2006/015)	2		Х			
A20	Increased Vle/Vlo	0		X			
A21	South African AFM	0		X			
A22	Argentine AFM	0		X	X		
A23	Ukrainian AFM	0		X	X		

4th Edition, Rev. 8

P2006T - Aircraft Flight Manual

COSTRUZIONI AERONAUTICHE

Page 9-3

	SUPPLEMENTS	LIST					
Sup.		Rev.		Applicablity		Applied	
No.	Title	No. Dat	Date	Α	G	Yes	No
A24	SMP for Analogic Configuration	1		X			
A25	Alternators with 70A	1		X			
A26	Mogas MG95 IS 2796:2008	1		Х	Х		
A27	Cancelled						
G1	Garmin G950 IFDS	5	2		X		
G2	S-TEC Fifty Five X Autopilot	1			X		
G3	Bendix-King Honeywell KR 87 ADF System for GARMIN G950	0			X		
G4	Bendix-King Honeywell KN 63 DME System for GARMIN Integrated Avionics Suite	1			Х		
G5	Engine starting battery	0			Х		
G6	Power supply from built-in generators	0			Х		
G7	AFM Supplement for CIS countries operators	0			X		
G8	Brazilian AFMS	0			X		
G9	Chinese AFMS	0			X		
G10	Increased MTOW - 1230 KG (MOD 2006/015)	1			X		
G11	Increased Vle/Vlo	0			X		
G12	South African AFM	0			X		
G13	Alternators with 70A	0			X		
G14	SMP for Garmin G950 Avionics	2			X		
G15	Japanese AFM	0		Х	Х		
G16	MD302 Alternative Stand-By Instrument	1			X		
G17	Stormscope	1			X		
G18	Cancelled						
G19	G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302	4	¢		X	Í	

Aircraft	S/N: Registration marks:	_ Date:			_				
	SUPPLEMENTS LIST								
Sup.	Sup.			Applicablity		Applied			
No.	Title	No.	Date	Α	G	Yes	No		
G20	GARMIN GTX345R Transponder	0			Х				
G21	Becker 3500 ADF for GARMIN NXi	0			Х				
G22	GARMIN GTS800 TAS for GARMIN NXi	0			Х				
G23	SMP Configuration for Garmin NXi Avionics Suite	1			Х				
G24	TABI-1800	0		X	Х				

Page 9-4

SUPPLEMENT NO. A22 – ARGENTINE AFM

Record of Revisions

Rev	Revised	Description of	Tecr	nam Appro	EASA Approval Or Under DOA		
Nev	page	ge Revision	DO	ОоА	HDO	Privileges	
0	All	Editorial Change	A. Sabino	C. Caruso	M. Oliva	See Note (*)	

Note (*): this Supplement has been originally issued on 5th May 2014, after EASA Third Country Validation process completion.

LOEP

Page	Revision	Page	Revision
A22-1	Rev 0	A22-10	Rev 0
A22-2	Rev 0	A22-11	Rev 0
A22-3	Rev 0	A22-12	Rev 0
A22-4	Rev 0		
A22-5	Rev 0		
A22-6	Rev 0		
A22-7	Rev 0		
A22-8	Rev 0		
A22-9	Rev 0		

4th Edition, Rev. 0

TABLE OF CONTENTS

INTRODUCTION	
General	5
1. Fuel	
Limitations	
1. Kind of Operation Equipment	5
2. Other Placards	6

INTRODUCTION

This Supplement applies for Argentine registered aircraft.

It contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is registered in Argentine.

For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual, as applicable.

GENERAL

1. FUEL

Approved fuel:

MOGAS ASTM D4814 AVGAS 100LL (ASTM D910)

LIMITATIONS

1. KIND OF OPERATION EQUIPMENT

The equipment appropriate for different types of operations must comply with applicable regulations.

2. OTHER PLACARDS

Description	Placard	Place	Dimensions (mm)
ELT equipment location	ELT AQUí	Baggage com- partment, right side	50x45
First Aid Kit location	EQUIPO DE PRIMEROS AUXILIOS	Baggage com- partment, aft cover panel	40x40
Fire extin- guisher loca- tion	EXTINTOR	Cockpit floor, pilot side	35x50
Emergency gear extension compartment location	TIRAR PARA ABRIR EXTENSION DE EMERGENCIA DEL TREN DE ATERRIZAJE 93 KIAS	Removable cap	55x28
Emergency gear extension compartment location (only if MOD2006/33 or SB 098 CS is installed)	TIRAR PARA ABRIR EXTENSION DE EMERGENCIA DEL TREN DE ATERRIZAJE 122 KIAS	Removable cap	55x28

4th Edition, Rev. 0

Section 9 – Supplements

Page A22-7

Description	Placard	Place	Dimensions (mm)
Emergency gear extension instructions	OPERACIONES DE EMERGENCIA PRIMERO DESCARGAR ON LUEGO EMERGENCIA	Emergency distributors compartment	55x28
Smoking ban	NO SMOKING NO FUMAR	Instruments panel, right side	21x3
ESB voltmeter (see suppl. A14)	BATERIA ARRANQUE DE MOTOR VOLTIMETRO	Instruments panel, right side	56x9
Battery hous- ing	ABRIR AQUÌ 1/4 DE GIRO BATERIA ADENTRO	On the battery housing, left side, aircraft tail cone	65x40
Engine oil lev- el and specifi- cations	TANQUE DE ACEITE verificar nivel Nivel de aceite Nivel de aceite MMAX 3 Lt OK MIN 2 Lt NO VOLAR CON NIVELES DE ACEITE FUERA DE LIMITES USAR SOLAMENTE CON API CLASIFICACION SG O SUPERIOR	On the engine nacelle, in cor- respondence of the engine oil reservoir ac- cess door	50x50

4th Edition, Rev. 0

Section 9 – Supplements

Description	Placard	Place	Dimensions (mm)
Fuel type and quantity		In correspond- ence of each	70x50
	MOGAS ASTM D4814 AVGAS 100LL (ASTM D910)	fuel tank filler cap.	
	100 LITROS (26.4 U.S. GALS.) CAPACIDAD TOTAL		
		T	05.00
Ground con- nection during refuelling pro- cedure	ANTES DE CARGAR COMBUSTIBLE CONECTAR LA AERONAVE A TOMA ELECTRICA A TIERRA	In correspon- dance of each tank filler cap	85x20
Baggage com- partment ca- pacity	CARGA MÁXIMA DE EQUIPAJE 80kg/1761b MAXIMA PRESION ESPECIFICA 0.9 kg/dm ² - 19 lbs/sqft ASEGURAR EL EQUIPAJE CON LA RED ANTES DEL VUELO	Baggage compartment (vertical panel)	90x55
Ditching emer- gency exit: opening in- structions	EMERGENCIA AMERIZAJE FORZOZO SALIDA 1. GIRAR 2. EMPUJAR LA PUERTA FIRMEMENTE	Ditching emer- gency exit handle: internal side	77x46 - Ø200
Ditching emer- gency exit: opening in- structions	EMERGENCIA AMERIZAJE FORZOZO SALIDA 1. GIRAR 2. TIRAR DE LA PUERTA FIRMEMENTE	Ditching emer- gency exit handle: exter- nal side	77x46 - Ø200

4th Edition, Rev. 0

Section 9 – Supplements

Description	Placard	Place	Dimensions (mm)
Door locking system: by- pass instruc- tions	PARA ACCESO DE EMERGENCIA 1. EMPUJAR Y MANTENER ABAJO LA PESTAÑA ROJA 2. ABRIR LA PUERTA CON LA MANIJA I. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency ex- it: internal side	55x30 each
Door locking system: by- pass instruc- tions	PARA ACCESO DE EMERGENCIA 1. EMPUJAR Y MANTENER ABAJO LA PESTAÑA ROJA 2. ABRIR LA PUERTA CON LA MANIJA PARA ACCESO DE EMERGENCIA 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emergency ex- it: external side	55x30 each
Main door: exit instructions	PRIOR TO OPENING CABIN DOOR, MAKE SURE THE PROPELLER BLADES ARE FULLY STOPPED. OPEN CABIN DOOR AND ALLOW PASSENGERS TO DEPART THE AIRCRAFT ALONGSIDE THE DOOR.	Main door, in- ternal side	67x20
Emergency exit label	EMERGENCY EXIT SALIDA DE EMERGENCIA	Emergency ex- it: internal and external side	200x20
Towing maxi- mum turning angle	PRECAUCION angulo maximo de giro de remolque: 20° desde el centro hacia ambos lados	Nose landing gear front door	88x52
Seat position advisory	LOS ASIENTOS TRASEROS DEBEN ESTAR EN LA POSICION MAS BAJA Y COMPLETAMENTE HACIA ATRÁS DURANTE CARRETEO, DESPEGUE, ATERRIZAJE Y ATERRIZAJE DE EMERGENCIA	Behind pilot and co-pilot seats	85x18

4th Edition, Rev. 0

Section 9 – Supplements

Description	Placard	Place	Dimensions (mm)
Coolant tank content	REFRIGERANTE	On the coolant tank	17x19
Main gear tires inflating pres- sure	PRESION DE INFLADO RUEDAS TREN PRINCIPAL 2.3bar/33psi	Near each main gear wheel	47x20
Nose gear tires inflating pres- sure	TREN DE NARIZ 1.7bar/24psi	Near the nose wheel	47x20
External power socket	(MASTER OFF) (Dec) (D	Below the ex- ternal power socket, aircraft tail cone, left side	50x48
Emergency tank max pres- sure indicating	PRESION TANQUE LIQUIDO HIDRAULICO DE EMERGENCIA LIMITE DE BAJA PRESION 20 BAR / 290 P.S.I .	On the emer- gency tank in- spection door, left side, air- craft tail cone	150x15
Static port	TOMA ESTATICA MANTENER LIMPIA	On each static port, left and right side of aircraft tail cone	40x12

4th Edition, Rev. 0

Description	Placard	Place	Dimensions (mm)
LG hydraulic compartment location	TREN DE ATERRIZAJE COMPARTIMIENTO HIDRAULICO	Fuselage tail, left side, in correspondence of LG hydrau- lic compart- ment cap	80x20

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Supplement no. A23

Ukrainian Aircraft Flight Manual Supplement

Record of Revisions

Rev	Revised	Revised Description of		nam Appr	EASA Approval or Under DOA	
ĸev	page Revision	DO	OoA	HDO	Privileges	
0	-	See Note (*)	D. Ronca	M. Oliva	M. Oliva	DOA

Note (*): this Supplement has been originally issued on 12 January 2015, after EASA Third Country Validation process completion.

List of Effective Pages

Page	Revision	Page	Revision
A23-1	Rev 0		
A23-2	Rev 0		
A23-3	Rev 0		
A23-4	Rev 0		
A23-5	Rev 0		
A23-6	Rev 0		
A23-7	Rev 0		
A23-8	Rev 0		
A23-9	Rev 0		
A23-10	Rev 0		
A23-11	Rev 0		
A23-12	Rev 0		

TABLE OF CONTENTS

INTRODUCTION	3
GENERAL	
FUEL	
LIMITATIONS	
Flight Altitude	4
Types of surface	4
Restriction flight area without HF COMM	4
Other placards	4
Kinds of Operations Equipment List	5
EMERGENCY PROCEDURES	6
Smoke and fire occurrence	
NORMAL OPERATIONS	
PERFORMANCES	8
Landing performances	8
WEIGHT AND BALANCE	10

INTRODUCTION

This supplement must be placed in EASA Approved P2006T Aircraft Flight Manual Section 9, if the airplane is delivered in Ukraine.

This supplement must be applied to both P2006T digital and analogue configuration.

For limitations, procedures, and performance information not contained in this supplement, refer to the EASA Approved Aircraft Flight Manual.

GENERAL

The information contained herein complements or supersedes the basic information in the EASA Approved Aircraft Flight Manual.

FUEL

APPROVED FUEL

- MOGAS ASTM D4814
- MOGAS EN 228 Super/Super plus (min. RON 95)
- AVGAS 100 LL (ASTM D910)
- MOGAS DSTU 4839-2007

LIMITATIONS

FLIGHT ALTITUDE

"For flight at altitudes above 3600 m (11811 ft) the crew must use oxygen equipment.

Flights between 3000m (9842 ft) and 3600 (11811) altitude without oxygen equipment for the crew are limited to a maximum of 30 minutes.

For airplane operation above 3000 m (9842 ft) for more than 30 minutes, Oxygen supply must be provided for at least one passenger."

TYPES OF SURFACE

Take-off and landing operations must be conducted on dry or wet paved surfaces, dry or grass surfaces with a maximum grass height of 10 centimeters, or unpaved runways with a soil strength greater than or equal to 6 kg per sq. centimeter $(\sigma \ge 6 kg/cm^2)$.

RESTRICTION FLIGHT AREA WITHOUT HF COMM

The flights of the airplane that are not equipped with HF communication system in areas without VHF communication capabilities are prohibited.

OTHER PLACARDS

Description	Placard	Place
Fuel type and quantity	MOGAS ASTM D4814-EN 228 SUPER/SUPER PLUS (min. RON 95) DSTU 4839-2007 AVGAS 100LL (ASTM D910) 50 LITERS (13.2 U.S. GALS.) TOTAL USABLE CAPACITY	In correspondence of each fuel tank filler cap.

KINDS OF OPERATIONS EQUIPMENT LIST

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
Airspeed indicator	•	•	•	•
Altimeter	•	•	•	•
Vertical speed indicator	•	•	•	•
Attitude indicator (electric)	•	•	•	•
Turn coordinator	•	•	•	•
OAT indicator	•	•	•	•
Pitot heating system	•	•	•	•
Directional Gyro (electric)	•	•	•	•
Clock	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
8	•	-	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch		•	•	•
Cabin light		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter	•	•	•	•
COMM/NAV/GPS equipment	•	•	•	•
VOR/LOC/GS/GPS CDI	•	•	•	•
LG position and transition lights	•	•	•	•
Transponder	•	•	•	•
Audio Panel/Marker beacon	•	•	•	•
Altitude encoder	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
Annunciator panel	•	•	•	•
2 nd VHF COMM/NAV equipment	-	•	•	•
2 VHF COMMINIAV equipment 2 nd VOR/LOC/GS CDI		-	•	•
DME		+	•	•
ADF		-		
	•	•	•	•
2 nd Airspeed indicator			•	•
2 nd Attitude indicator (electric)			•	•
2 nd Altimeter		-	•	•
	VFR Day	VFR Night	IFR Day	IFR Night

Section 9 – Supplements

EMERGENCY PROCEDURES

SMOKE AND FIRE OCCURRENCE

Use ventilation window in case of smoke in cabin for all cases.

NORMAL OPERATIONS

Make reference to Section 4 of this Manual.

PERFORMANCES

LANDING PERFORMANCES

Weight = 1180 kg

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (*16 ft/kt*)

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll Runway slope: -2.5% to Ground Roll for each +1% For dry and precipitation-covered runway: +67% to ground roll for destination airport +43% to ground roll for alternate airport

For wet runway:

+92% to ground roll for destination airport +64% to ground roll for alternate airport

Pressure		Distance [m]					
Altitude			Temperature [°C]				
[ft]		-25	0	25	50	ISA	
S.L.	Ground Roll	183	202	220	238	213	
J.L.	At 50 ft AGL	288	312	335	358	326	
1000	Ground Roll	190	209	228	247	219	
1000	At 50 ft AGL	297	321	345	369	334	
2000	Ground Roll	197	217	237	256	226	
2000	At 50 ft AGL	306	331	356	381	342	
3000	Ground Roll	204	225	245	266	232	
5000	At 50 ft AGL	325	352	379	405	360	
4000	Ground Roll	212	233	255	276	239	
4000	At 50 ft AGL	325	352	379	405	360	
5000	Ground Roll	220	242	264	287	247	
5000	At 50 ft AGL	335	363	391	418	369	
6000	Ground Roll	228	251	275	298	254	
8000	At 50 ft AGL	346	375	403	431	378	
7000	Ground Roll	237	261	285	309	262	
7000	At 50 ft AGL	357	387	416	445	388	
8000	Ground Roll	246	271	296	321	270	
8000	At 50 ft AGL	368	399	430	460	398	
9000	Ground Roll	256	282	308	334	279	
9000	At 50 ft AGL	380	412	444	475	409	
10000	Ground Roll	266	293	320	347	288	
10000	At 50 ft AGL	393	426	459	491	420	

INTENTIONALLY LEFT BLANK

WEIGHT AND BALANCE

For weight and balance, make reference to Section 6 of this Manual.

INTENTIONALLY LEFT BLAN

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. A23 – Ukrainian AFM Supplement

INTENTIONALLY LEFT BLAN

SUPPLEMENT NO. A26 AIRCRAFT FLIGHT MANUAL SUPPLEMENT FOR MOGAS MG95 IS 2796:2008

Record of Revisions

Rev	Revised Description of		Tec	nam Appro	EASA Approval or Under DOA	
Nev	Rev page Revision	DO	OoA	HDO	Privileges	
0	all	Editorial change	A. Sabino	C. Caruso	M. Oliva	DOA Approval

List of Effective Pages

Page	Revision	Page	Revision
A26-1	Rev 0		
A26-2	Rev 0		
A26-3	Rev 0		
A26-4	Rev 0		

INTRODUCTION

This supplement contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is modified with type certificate change MOD2006/284.

For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

SECTION 2 - LIMITATIONS

The following pages should be added to the basic AFM

FUEL

The following fuel should be added to the ones listed in section 2 of the original AFM

MOGAS • MOGAS MG 95 compliant to IS 2796:2008,

NOTE: For additional information, refer to Rotax Service Instruction No. 912-016, latest issue.

MOGAS MG95 IS 2796:2008

SUPPLEMENT NO. G1

GARMIN G950 IFDS

Record of Revisions

Rev	ev Revised Description of		Tecn	am Appro	val	EASA Approval or Under DOA	
	page	Revision	DO	OoA	HDO	Privileges	
0	-	See Note (*)					
	S4-3,4	Amend General rec- ommendation	D. Ronca	C. Caruso	M. Oliva		
1	S4-23,24	Update procedures	D. Ronca	C. Caruso	M. Oliva	Approved under the	
2	S4-1 and S4-31 thru 38	RNAV capabilities	A. Sabino	C. Caruso	M. Oliva	authority of DOA, ref. EASA.21J.335	
3	\$4-3,13,20, 21,23,24,29	Amended procedures	A. Sabino	C. Caruso	M. Oliva		
4	S4-27 to 29	Amended procedures	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA, ref. EASA.21J.335 (MOD2006/345.181120)	
	S3-1	Index Updated	A. Glorioso			Approved under the	
5	S3-33	Electrical pitch trim control failure procedures	(OJT) G. Valentino	D. Ronca M. Oliva	authority of DOA, ref. EASA.21J.335 (MOD2006/375.19.08.26)		

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

LOEP

	Pages	Revision
Conorragos	G1-3 thru 16	Rev 0
Cover pages	G1-1 thus 2	Rev 5
Section S2	7,8, 13,14,21,22,29,30	Rev 0
Section S3	2 thru 32, 34 thus 62	Rev 0
	1, 33	Rev 5
	2, 5 thru 12, 14 thru 19, 22, 25 thru 26, 30	Rev 0
	4	Rev 1
Section S4	1, 31 thru 38	Rev 2
	3,13,20,21,23,24	Rev 3
	27 to 29	Rev 4
Section S7	37 thru 46	Rev 0

LOEP

	Pages	Revision
Course magaz	G1-3 thru 16	Rev 0
Cover pages	G1-1 thus 2	Rev 11
Section S2	7,8, 13,14,21,22,29,30	Rev 0
Section S3	2 thru 32, 34 thus 62	Rev 0
	1, 33	Rev 11
	2, 5 thru 12, 14 thru 19, 22, 25 thru 26, 30	Rev 0
	4	Rev 1
Section S4	1, 31 thru 38	Rev 2
	3,13,20,21,23,24	Rev 3
	27 to 29	Rev 4
Section S7	37 thru 46	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002).

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per the Design Change in subject.

It is the owner's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Supplement G1: pages replacement instructions

SECTION 1 - GENERAL

See Basic AFM - Section 1

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G1 – GARMIN G950 IFDS Supplement G1: pages replacement instructions

SECTION 2 - LIMITATIONS

Apply following p	ages replacement procedure:
-------------------	-----------------------------

Supplement G1 – LIMITATIONS page		Basic AFM Section 2 page
S2-7	REPLACES	2-7
S2-8	REPLACES	2-8
S2-13	REPLACES	2-13
S2-14	REPLACES	2-14
S2-21	REPLACES	2-21
S2-22	REPLACES	2-22
S2-29	REPLACES	2-29
S2-30	REPLACES	2-30

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G1 – GARMIN G950 IFDS

3 Airspeed indicator markings

The Airspeed Indicator displays airspeed on a rolling number gauge using a moving tape.

The airspeed is displayed inside the black pointer. The pointer remains black until reaching never-exceed speed (V_{NE}), at which point it turns red.

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White band	53-93	Lower limit is V_{SO} , upper limit is the maximum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green band	66-135	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	80	Best rate-of-climb speed with one engine in- operative.
Yellow band	135-167	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	167	Maximum speed for all operations.

INTENTIONALLY LEFT IN BLANK

P2006T - Aircraft Flight Manual

13 Warning/caution alerts and safe operating annunciations

Following table addresses the warning and caution alerts and safe operating annunciations shown (unless differently specified) on the Annunciation Window:

Warning alert (RED)	Cause
L BUS VOLT HIGH	LH electric system overvoltage
R BUS VOLT HIGH	RH electric system overvoltage
L COOLANT LOW	Left engine - coolant liquid low level
L COOLANT LOW	Right engine - coolant liquid low level
PILOT DR OPEN	Main door open and/or unlocked
REAR DR OPEN	Rear door open and/or unlocked
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION (warning light installed near the landing gear control lever)	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached.
Caution alert (AMBER)	Cause
L ALT FAIL	LH generator failure
R ALT FAIL	RH generator failure
PITOT HEAT	Pitot heating system failure/not activated
EXT POWER ON	External electrical supply connected
GEAR PUMP ON	LG pump electrically supplied
Safe operating annunciation (GREEN)	Indication
L FUEL PUMP ON	Left engine - electrical fuel pump ON
R FUEL PUMP ON	Right engine - electrical fuel pump ON
PITOT HEAT ON	Pitot heating system ON
LG Down & Locked (3 advisory lights, one for each leg, in- stalled near the landing gear control lever)	Landing gear extended and locked

EASA Approved

GARMIN G950 IFDS - Supplement

COSTRUZION AFRONAUTICHE P2006T - Aircraft Flight Manual

Aural means are provided by Garmin G950 System: a repeating tone is associated to the warning alerts and a single chime is associated to the caution alerts. Safe operating annunciations do not have any aural chime generated.

Make reference to Garmin G950 Pilot's Guide for P2006T, last issue, "Annunciations and alerts" (Appendix A).

Section 2 – Limitations

4th Edition, Rev. 0

WARNING/CAUTION ALERTS AND SAFE OPERATING ANNUNCIATIONS

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, the following placards reporting the speed limitations are placed:

> Operating Manoeuvring speed Vo = 118KIAS

> Maximum L.G. op. speed V_{LO} / V_{LE} = 93KIAS

21.2. OPERATING LIMITATIONS

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the route to be flown.

GARMIN G950 IFDS - Supplement

P2006T - Aircraft Flight Manual

Page S2 - 30

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
GDU 1040 - Display Unit (2)	•	•	•	•
GIA 63W - Integrated Avionics Unit (2)	•	•	•	•
GDC 74A - Air Data Computer	•	•	•	•
GTP 59 - OAT sensor	•	•	•	•
GRS 77 - AHRS	•	•	•	•
GMU 44 - Magnetometer	•	•	•	•
GMA 1347 - Audio panel/Marker beacon	•	•	•	•
GTX 33 - Transponder	•	•	•	•
Standby Airspeed indicator	•	•	•	•
Standby Attitude indicator (electric)	•	•	•	•
Standby Attitude Indicator (electric)	•	•	•	•
Pitot heating system	•	•	•	•
Clock				
	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Instruments lights	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch		•	•	•
Cabin light		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter	•	•	•	•
LG position and transition lights	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
MAP indicator (dual)	•	•	•	•
RPM indicator (2)	•	•	•	•
Oil pressure indicator (2)	•	•	•	•
Oil temperature indicator (2)	•	•	•	•
CHT (2)	•	•	•	•
Fuel pressure indicator (2)	•	•	•	•
Fuel quantity indicator (2)	•	•	•	•
Longitudinal trim indicator	•	•	•	•
Rudder trim indicator	•	•	•	•
Flaps position indicator	•	•	•	•
Stall warning system	•	•	•	•
DME	•	-	•	•
ADF		+	•	•
			•	-
		VED Night	IED Dov	IED Niekł
	VFR Day	VFR Night	IFR Day	IFR Night

Section 2 – Limitations

Supplement G1: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Apply following page replacement procedure

Supplement G1 – EMERGENCY PROCEDURES pages replace Basic AFM Section 3 as a whole

INTENTIONALLY LEFT IN BLANK

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

Page S3 - 1

SECTION 3 – EMERGENCY PROCEDURES

INDEX

1.	INTRODUCTION
1.1.	Engine failure during takeoff run
2.	Airplane alerts
2.1	Single alternator failure / overvoltage7
2.2	Both alternators failure 8
2.3	Both alternators overvoltage9
2.4	Failed door closure10
2.5	Pitot heating system failure11
2.6	
2.7	Gear Pump failure13
2.8	
2.9	Loss of information displayed15
2.10) Loss of airspeed information15
2.10	Loss of attitude information16
	Loss of altitude information16
2.12	Loss of vertical speed information17
	Coss of heading information17
2.14	Display failure19
3.	ENGINE SECURING21
4.	POWERPLANT EMERGENCIES23
4.1	Propeller overspeeding23
4.2	CHT limit exceedance24
4.3	
4.4	F
4.5	Low fuel pressure27
5. O	ther emergencies
5.1	Emergency descent
5.2	Total electrical failure
5.3	Static ports failure
5.4	Unintentional flight into icing conditions31
5.5	Carburettor icing
5.6	Flaps control failure
5.7	Electrical pitch trim control failure
6	ONE ENGINE INOPERATIVE PROCEDURES
6.1	Characteristic airspeeds with one engine inoperative
6.2	Inflight engine restart
6.3	Engine failure during takeoff run37
6.4	Engine failure during climb
6.5	Engine failure in flight40
66	One engine inoperative landing41

Garmin G950 IFDS -Supplement

P2006T - Aircraft Flight Manual Page S3 - 2

7	LANDING GEAR SYSTEM FAILURES	42
7.1	Emergency landing gear extension	42
7.2	Complete Gear up or nose gear up landing	43
7.3	Partial Main LG extension	45
7.4	Failed retraction	47
7.5	Unintentional landing gear extension	47
8	SMOKE AND FIRE OCCURRENCE	49
8.1	Engine fire on the ground	49
8.2	Engine fire during takeoff run	50
8.3	Engine fire in flight	52
8.4	Electrical smoke in cabin on the ground	52
8.5	Electrical smoke in cabin during flight	53
9	UNINTENTIONAL SPIN RECOVERY	55
10	LANDING EMERGENCIES	56
10.1	Landing without engine power	56
10.2	2Landing with Nose landing gear tire deflated	58
10.3	BLanding with a known main landing gear tire deflated	59
10.4	Landing without brakes	60
11	AIRCRAFT EVACUATION	61
12	DITCHING	62

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual Page S3 - 3

1. INTRODUCTION

K TECNAM

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. **Rudder**

3. --

4. --

- BOTH IDLE Keep heading control
- b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable

ea where suitable repairs can be made.

area at which a safe approach and landing is assured. Land as soon as practical: land at the nearest approved landing ar-

CNAM P2006T - Aircraft Flight Manual Page S3 - 5

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures

P2006T - Aircraft Flight Manual Page S3 - 6

2. AIRPLANE ALERTS

Annunciation Window, located to the right of the Altimeter and Vertical Speed Indicator, supplies 16 alerts for warnings and cautions along with safe operating annunciations. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
<u>RED:</u>	to indicate emergency conditions

Warning alert text is shown in red in the Annunciation Window and is accompanied by a continuous chime and a flashing WARNING Softkey annunciation. Selecting the WARNING Softkey acknowledges the presence of the warning alert and stops the aural chime.

Caution alert text is shown in yellow in the Annunciation Window and is accompanied by a single chime and a flashing CAUTION Softkey annunciation. Selecting the CAUTION Softkey acknowledges the presence of the caution alert. Caution voice alerts repeat three times or until acknowledged by selecting the CAUTION Softkey.

All aircraft annunciations can be displayed simultaneously in the Annunciation Window. A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged. Higher priority annunciations are displayed towards the top of the window.

In order to give a short description about the airplane alerts, text messages are displayed on the Alerts Window: pressing the ALERTS Softkey displays the Alerts Window, pressing the ALERTS Softkey a second time removes the Alerts Window from the display. When the Alerts Window is displayed, the FMS knob can be used to scroll through the alert message list.

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

2.1 SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
(DR
R ALT FAIL	Rh Alternator
1. FIELD LH (or RH)	OFF
2. FIELD LH (or RH)	ON
If the LH (or RH) A	LT caution stays displayed
3. FIELD LH (or RH)	OFF
4. Avionic LH	OFF
5. ADF	OFF

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

If conditions permit:

NOTE

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH)

OFF

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

* AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

7. Land as soon as practicable

4th Edition, Rev. 0

Section 3 – Emergency procedures

Single alternator failure / overvoltage

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

2.2 BOTH ALTERNATORS FAILURE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
R ALT FAIL	Rh Alternator

In event of both L and R ALT FAIL caution alerts displayed:

1.	FIELD LH and RH	BOTH OFF
2.	FIELD LH and RH	BOTH ON

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

3.	FIELD LH and RH	BOTH OFF
4.	CROSS BUS LH and RH	BOTH OFF

If engine starting battery modification is applied

ON

5. EMERG BATT switch

NOTE

6. Land as soon as possible.

If engine starting battery modification is not applied 5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Page S3 - 8

P2006T - Aircraft Flight Manual

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

- 1. FIELD LH and RH
- 2. FIELD LH and RH

K TECNAM

BOTH ON (one at a time)

BOTH OFF

ON

If the LH (or RH) BUS VOLT HIGH warning is still displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

BOTH OFF

BOTH OFF

BOTH ON (one at a time)

- 3. CROSS BUS LH and RH BOTH OFF
- 4. FIELD LH and RH
- 5. FIELD LH and RH

If LH (or RH) BUS VOLT HIGH warning is still displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

6. FIELD LH and RH

If engine starting battery modification is applied

- 7. EMERG BATT switch
- 8. Land as soon as possible.

If engine starting battery modification is not applied

7. Land as soon as possible

NOTE

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC*	

AHRS /ADC are fed from battery bus if Mod 2006/135 is embodied

The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Section 3 – Emergency procedures

Both alternators failure

Page S3 - 9

P2006T - Aircraft Flight Manual Page S3 - 10

2.4 FAILED DOOR CLOSURE

Annunciation window	Alert window	
PILOT DR OPEN	Main door open	
OR		
REAR DR OPEN	Rear door open	

In case of door opening / unlocking, related PILOT or REAR DR OPEN alert is displayed. In this case, apply following procedure:

ON THE GROUND

<u>If door is open</u>

Passengers and crew seat belts
 Affected door
 Fasten and tighten
 Verify correctly closed

3. Relevant engine

4. Affected door

Close and check If door is closed

Shut down

3. Locking device

Check

If down in unlocked position

4. Abort mission.

IN FLIGHT

Passengers and crew seat belts
 Affected door and locked device
 Fasten and tighten Verify correctly closed

If door is open or locking device is unlocked

3. Land as soon as possible

4th Edition, Rev. 0

Section 3 – Emergency procedures

Both alternators failure

2.5 **PITOT HEATING SYSTEM FAILURE**

Annunciation window	Alert window
PITOT HEAT ON	Pitot heat
PITOT HEAT	Pitot heat

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.

If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

1. Pitot heat switch OFF

2. Verify Pitot Heating circuit breaker is IN

- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

Section 3 – Emergency procedures

Both alternators failure

2.6 COOLANT LIQUID LOW LEVEL

When the engine coolant liquid level goes under the lower limit, the related L or R COOLANT LOW warning alert is displayed. Low coolant level condition may lead to high CHT/CT. When the warning is displayed, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CH/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

P2006T - Aircraft Flight Manual Page S3 - 13

2.7 GEAR PUMP FAILURE

K TECNAM

Annunciation window	Alert window
GEAR PUMP ON	Gear powered

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.

If TRANS light is ON

2. Landing gear is not locked in UP position

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

Section 3 – Emergency procedures

Both alternators failure

P2006T - Aircraft Flight Manual

2.8 ENGINE FIRE

TECNAM

In event of engine fire, the LH or RH ENGINE FIRE warning alert is displayed. Refer to following procedures:

FIRE ON THE GROUND:	see Para. 8.1
FIRE DURING TAKEOFF RUN:	see Para. 8.2
FIRE IN FLIGHT:	see Para. 8.3

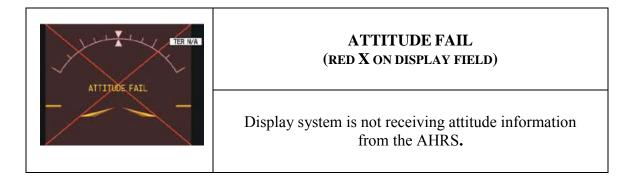
NOTE

2.9 LOSS OF INFORMATION DISPLAYED

When a LRU or a LRU function fails, a large red 'X' is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00), last issue, Appendix A, Message Advisories list.

2.10 LOSS OF AIRSPEED INFORMATION


AIRSPEED FAIL (red X on display field)
Display system is not receiving airspeed input from the Air Data Computer.

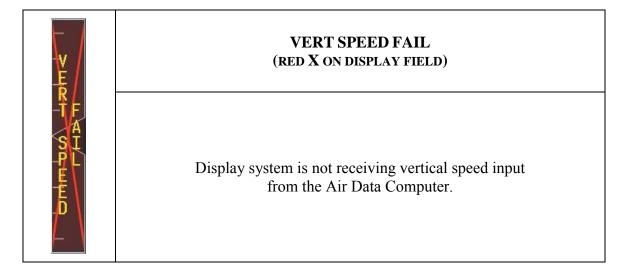
INSTRUCTION: revert to standby analogical airspeed indicator

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual

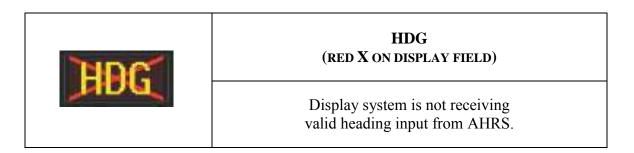
2.10 LOSS OF ATTITUDE INFORMATION

INSTRUCTION: revert to standby analogical attitude indicator

2.11 LOSS OF ALTITUDE INFORMATION


ALTITUDE FAIL	ALTITUDE FAIL
(RED X ON DISPLAY FIELD	(red X on display field)
	Display system is not receiving altitude input from the Air Data Computer.

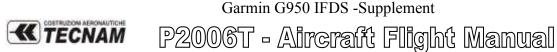
INSTRUCTION: revert to standby analogical altitude indicator


P2006T - Aircraft Flight Manual

2.12 LOSS OF VERTICAL SPEED INFORMATION

INSTRUCTION: determine vertical speed on the basis of altitude information

2.13 Loss of heading information


INSTRUCTION: revert to magnetic compass

CNAM P2006T - Aircraft Flight Manual Page S3 - 18

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures G950 SYSTEM FAILURES

2.14 DISPLAY FAILURE

In the event of a display failure, the G950 System automatically switches to reversionary (backup) mode. In reversionary mode, all important flight information is presented on the remaining display in the same format as in normal operating mode. The change to backup paths is completely automated for all LRUs and no pilot action is required.

if the system fails to detect a display problem

1. DISPLAY BACKUP button

PUSH

If a display fails, the related Integrated Avionics Unit (IAU) is cut off and can no longer communicate with the remaining display: consequently the NAV and COM functions provided to the failed display by the Integrated Avionics Unit are flagged as invalid on the remaining display.

CNAM P2006T - Aircraft Flight Manual Page S3 - 20

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures G950 SYSTEM FAILURES

P2006T - Aircraft Flight Manual

3. ENGINE SECURING Following procedure is applicable to shut-down one engine in flight: 1. Throttle Lever IDLE 2. Ignition BOTH OFF 3. Propeller Lever FEATHER 4. Fuel Selector OFF 5. Electrical fuel pump OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

CNAM P2006T - Aircraft Flight Manual Page S3 - 22

INTENTIONALLY LEFT BLANK

TECNAM

4. POWERPLANT EMERGENCIES

4.1 **PROPELLER OVERSPEEDING**

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

- 1. Throttle Lever
- 2. Propeller Lever
- 3. RPM indicator

REDUCE power to minimum practical REDUCE as practical (<u>not in feathering</u>) CHECK

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible a**pplying *one engine inoperative land-ing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause the engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals.

P2006T - Aircraft Flight Manual Page S3 - 24

4.2 CHT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 3)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

4.3 OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (130°C):

1. OIL PRESS CHECK

If oil pressure is within limits

Affected engine
 Affected engine
 Reduce power setting to minimum applicable
 Keep propeller speed higher than 2000 RPM

INCREASE

If oil pressure does not decrease

4. Airspeed

NOTE

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine *SECURE (engine securing procedure on Para. 3)*
- 8. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

P2006T - Aircraft Flight Manual Page S3 - 26

4.4 OIL PRESSURE LIMITS EXCEEDANCE

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

1. OIL PRESS

CHECK

If oil pressure exceeds upper limit (7 bar)

- 2. Throttle Lever fin
 - first REDUCE affected engine power by 10%
- 3. Propeller Lever Keep low rpm
- 4. OIL PRESS *CHECK* (verify if came back within the limits)
- 5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. Affected engine SECURE (see engine securing procedure on Para. 3)
- 4. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

4.5 LOW FUEL PRESSURE

TECNAM

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

1.	Fuel press	CHECK
2.	Fuel quantity	CHECK
3.	Fuel consumption	MONITOR

If a fuel leakage is deemed likely

5. Land as soon as possible.

If a fuel leakage can be excluded:

- 4. Electrical fuel pump ON
- 5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

INTENTIONALLY LEFT BLANK

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual Page S3 - 29

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

TECNAM

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

ON

BOTH ON

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary
1.		On y necessary

2.	MASTER SWITCH	OFF
3.	FIELD LH and RH	BOTH OFF

- 4. MASTER SWITCH
- 5. FIELD LH and RH

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. Land as soon as possible applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

1. Cabin ventilation

2. ALTERNATE STATIC PORT VALVE

3. Continue the mission

OFF (hot and cold air) OPEN

Garmin G950 IFDS -Supplement P2006T - Aircraft Flight Manual

5.4 UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

1. Carburettor heat

BOTH ON

- 2. Pitot heat
- 3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.

ON

- 4. Control surfaces *Move continuously to avoid locking*
- 5. Propellers rpm INCREASE to prevent ice build-up on the blades

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

Page S3 - 31

5.5 CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing formation is forbidden; in order to dispose of full engine take off power, take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the greater the advance carburettors are warmed the better the chances not to form ice and avoid engine power loss or reduction.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating selected to "ON" will cause engine RPM reduction of about 100 RPM causing a sensible available engine power decrease.

5.6 FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed

Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para. 6, "Stall Speed") and an increased landing distance of about 25%.

1. Airspeed

Keep over 75 KIAS

2. Land as soon as practical on a runway of appropriate length

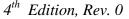
5.7 ELECTRICAL PITCH TRIM CONTROL FAILURE

a) Trim Runaway:

a) Irim Kunaway:	
In the event of trim runaway:	
1. AP DISC switch (if AP is installed)	PRESS and HOLD
2. TRIM DISC switch	OFF
3. AP DISC switch (if AP is installed)	RELEASE
4. Trim aircraft using trim wheel	
b) Trim Jamming: Should trim control be jammed / inoperative:	
1. Pitch trim breaker	CHECK
If circuit breaker is OUT:	
2. Trim aircraft using trim wheel	
If circuit breaker is IN:	
2. TRIM DISC switch	OFF
3. Trim aircraft using trim wheel	

6 ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine.


In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

CAUTION

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13, "One engine rate of climb".

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

P2006T - Aircraft Flight Manual Page S3 - 35

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Speed (KIAS)	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
Post rate of alimb aread $OEL(V_{ij})$	MTOW 1180 kg	MTOW 1230 kg
Best rate-of-climb speed OEI (V_{YSE})	80	84
Best gradient speed OEI (V _{XSE})	79	83

Reference is made to MTOW, 1180 kg and 1230 kg, at Sea Level and ISA condition (if Supplement G10- Increased MTOW @1230 KG - is applicable).

6.2 INFLIGHT ENGINE RESTART

After:

- mechanical engine seizure;
- fire;

- major propeller damage

engine restart is not recommended.

- 1. Carburettor heat
- 2. Electrical fuel pump
- 3. Fuel quantity indicator
- 4. Fuel Selector
- 5. FIELD
- 6. Ignition
- 7. Operating engine Throttle Lever
- 8. Stopped engine Throttle Lever
- 9. Stopped engine Propeller Lever
- 10. Start push-button
- 11. Propeller Lever
- 12. FIELD
- 13. Engine throttle levers

ON if required ON CHECK CHECK (Crossfeed if required) OFF BOTH ON SET as practical IDLE FULL FORWARD PUSH SET at desired rpm ON (check for positive ammeter) SET as required

If engine restart is unsuccessful

14. EMERG BATT switch

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

16. Affected engine

SECURE (see engine securing procedure Para. 3)

17. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

6.3 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE Keep heading control As required

BOTH OFF

When safely stopped:

- 4. Failed Engine Ignition
- 5. Failed Engine Field

OFF OFF

6. Failed Engine Electrical fuel pump

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. **Operating engine Throttle Lever**
- 2. Operating engine Propeller Lever
- 3. Heading
- 4. Attitude
- 5. Inoperative engine Propeller Lever
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps

FULL POWER FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0•

ECNAM P2006T - Aircraft Flight Manual Page S3 - 38

<u>At safe altitude</u>

- 9. <u>Inoperative engine</u>
- 10. Operative engine Electrical fuel pump Check ON
- 11. Operating engine
- 12. Operating engine Fuel Selector

Confirm and SECURE Check ON Check engine instruments Check correct feeding (crossfeed if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

13. Land as soon as possible

14. One engine inoperative landing procedure. see Para. 6.6

Following:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

P2006T - Aircraft Flight Manual Page S3 - 39

6.4 ENGINE FAILURE DURING CLIMB

- 1. Autopilot
- 2. Heading
- 3. Attitude

OFF

Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- 5. Operating engine Propeller Lever
- 6. Operative engine Electrical fuel pump
- 7. <u>Inoperative engine</u> Propeller Lever
- 8. <u>Inoperative engine</u>

FULL THROTTLE FULL FORWARD Check ON FEATHER Confirm and SECURE

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

If engine restart is unsuccessful or it is not recommended:

- 9. Land as soon as possible
- 10. One engine inoperative landing procedure. see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

P2006T - Aircraft Flight Manual Page S3 - 40

6.5 ENGINE FAILURE IN FLIGHT

- 1. Autopilot
- 2. Heading
- 3. Attitude

Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine
- 5. Operative engine Electrical fuel pump
- 6. Operating engine Fuel Selector

Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

OFF

If engine restart is unsuccessful or it is not recommended:

- 8. Land as soon as possible
- 9. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.

6.6 ONE ENGINE INOPERATIVE LANDING

Thoroughly evaluate residual Single Engine Go-Around capabilities and expected climb gradient should a Missed Approach / balked landing be executed.

Refer to Section 5, Para. Single engine go around/Balked landing/climb and Para. 13 and 14- One-engine Rate of Climb at V_{YSE} and V_{XSE}

Autopilot must be kept OFF

- 1. Seat belts
- 2. Landing lights
- 3. Operating engine Fuel Selector
- 4. <u>Inoperative engine</u> Propeller Lever
- 5. <u>Inoperative engine</u>
- 6. Operative engine Electrical fuel pump

When on final leg:

- 7. Flap
- 8. Landing gear

9. Approach Airspeed

10. Touchdown speed

Tightly fastened As required Check correct feeding/crossfeed if needed CHECK FEATHER CHECK SECURED ON

T/O Select DOWN and check three green lights on V_{YSE} 70 KIAS

Section 3 – Emergency procedures ONE ENGINE INOPERATIVE PROCEDURES

7 LANDING GEAR SYSTEM FAILURES

7.1 EMERGENCY LANDING GEAR EXTENSION

Landing gear extension failure is identified by means of the green lights not illuminated: relevant gear leg may not be fully extended and/or locked.

Light bulb operating status can be verified by pressing the LDG push-to-test button. Additionally, the red light TRANS indicates that one or more legs are moving and the PUMP ON amber light on the annunciator panel indicates the hydraulic gear pump is operating.

- 1. Airspeed
- 2. Landing gear control lever
- 3. Emergency gear extension access door
- 4. RH control lever

NOTE

5. Wait at least 20 seconds

below applicable VLO/VLE DOWN REMOVE ROTATE 90° counterclockwise

Main Landing Gear legs green lights may be turned on, thus indicating effective main gear legs blocked in down position by mere effect of gravity force.

6. LH control lever

ROTATE 180° counterclockwise

7. Land as soon as practical

PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS

NOTE

The emergency landing gear extension operation takes about 20- sec.

Section 3 – Emergency procedures

LANDING GEAR SYSTEM FAILURES

7.2 **COMPLETE GEAR UP OR NOSE GEAR UP LANDING**

WARNING

The following procedure applies if Nose Landing Gear is not extended and locked even after emergency extension procedure.

A Nose Landing Gear up leg not down and locked might lead to a hazardous situation, especially on uneven runways.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a complete Landing Gear up or a Nose Landing Gear up position is reported:

Preparation

- Reduce fuel load if time and conditions permit 1
- Crew and passengers safety belts 2.
- Landing gear control lever 3.
- Green lights and TRANS light 4.
- Flap setting 5.

Before ground contact:

- LH and RH Fuel Selector 6.
- LH and RH Electrical fuel pump 7.
- Ignitions 8.

On touch down:

- Landing attitude 9.
- 10. Touchdown speed
- 11. Aircraft nose

After aircraft stops:

- 12. FIELD LH and RH
- 13. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

4th Edition, Rev. 0

Section 3 – Emergency procedures LANDING GEAR SYSTEM FAILURES

Tightly fastened UP CHECK OFF plan approach with Flap Land

BOTH OFF **BOTH OFF** ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF **OFF**

14. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.3 PARTIAL MAIN LG EXTENSION

The following procedure applies if one or both Main Landing Gear legs are not completely extended and locked even after emergency extension procedure.

A partial gear landing (RH and/or LH leg not down and locked) might turn into a hazardous situation, especially on uneven runways.

If possible try to obtain a symmetric gear extension (e.g. by trying further landing gear retraction) in order to avoid swerving after touchdown. A gear up landing is generally considered safer.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Tightly fastened UP CHECK OFF plan approach with Flap Land

If partially extended landing gear is confirmed:

Before ground contact:

6.	LH and RH Fuel Selector	BOTH OFF
7.	LH and RH Electrical fuel pump	BOTH OFF
8.	Ignitions	ALL OFF

On touch down:

9.	Align for approach	on the runway centreline
10.	Touchdown speed	as low as 50 KIAS
11.	Touchdown	on the extended gear only
12.	Heading and direction	maintain applying appropriate aileron and rudder/steering control
13.	Retracted leg	keep off the ground as long as possible

After aircraft stops:

FIELD LH and RH
 MASTER SWITCH

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

16. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.4 FAILED RETRACTION

1. Airspeed

TECNAM

2. Landing gear control lever

WARNING

A Landing Gear lever recycle (further retraction attempt) may result in a final partial Landing Gear Extension, which may then compromise safe landing aircraft capability.

DOWN

Check

3. Landing Gear lights

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

7.5 UNINTENTIONAL LANDING GEAR EXTENSION

An unwanted landing gear extension, with at least one leg moving downward, may be caused by hydraulic fluid loss and it is signaled by

- significant aerodynamic noise increase;
- *light and counteractable nose down pitch moment;*
- <u>red TRANS light turned on.</u>
- 1. Airspeed
- 2. Landing gear control lever
- 3. Landing Gear lights

Keep below applicable VLO/VLE DOWN Check

Keep below applicable VLO/VLE

- If a safe landing configuration is obtained (3 greens)
- 4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

4th Edition, Rev. 0

Page S3 - 47

INTENTIONALLY LEFT BLANK

P2006T - Aircraft Flight Manual Page S3 - 49

8 SMOKE AND FIRE OCCURRENCE

	8.1 ENGINE FIRE ON THE GROUI	ND
1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	Cabin heat and defrost	OFF
5.	MASTER SWITCH	OFF
6.	Parking Brake	ENGAGED
7.	Aircraft Evacuation	carry out immediately
		mergency exit to escape in case pilot locked, watch for engine hot parts

Consider use of difching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

P2006T - Aircraft Flight Manual Page

8.2 ENGINE FIRE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE *Keep heading control As required*

With aircraft under control

- 4. Fuel Selector
- 5. Ignitions
- 6. Electrical fuel pump
- 7. Cabin heat and defrost
- 8. MASTER SWITCH
- 9. Parking Brake
- 10. Aircraft Evacuation

BOTH OFF ALL OFF BOTH OFF OFF OFF ENGAGED carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

1.	Operating engine Throttle Lever	FULL POWER
2.	Operating engine Propeller Lever	FULL FORWARD
3.	Heading	Keep control using rudder and ailerons
4.	Attitude	Reduce as appropriate to keep airspeed over 62 KIAS
5.	<u>Fire affected engine</u> Propeller Lever	FEATHER
6.	Landing gear control lever	UP
7.	Airspeed	V _{XSE} /V _{YSE} as required
8.	Flaps	0•
	_	

SMOKE AND FIRE OCCURRENCE

Page S3 - 50

P2006T - Aircraft Flight Manual Page S3 - 51

<u>At safe altitude</u>

- 9. Cabin heat and defrost
- 10. <u>Fire affected engine</u> Fuel Selector
- 11. <u>Fire affected engine</u> Ignitions
- 12. <u>Fire affected engine</u> Electrical fuel pump
- 13. <u>Fire affected engine FIELD</u>

BOTH OFF Confirm and OFF Confirm and BOTH OFF Confirm and OFF OFF

14. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

P2006T - Aircraft Flight Manual

BOTH OFF

over 62 KIAS

OFF

OFF

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

Confirm and OFF

Confirm and BOTH OFF

Confirm and FEATHER

Confirm and FULL FORWARD

Keep control using rudder and ailerons

Adjust as appropriate to keep airspeed

OFF

OFF

OFF

OPEN

8.3 **ENGINE FIRE IN FLIGHT**

- **Cabin heat and defrost** 1.
- Autopilot 2.
- **Fire affected engine** Fuel Selector 3.
- **Fire affected engine** Ignition 4.
- Fire affected engine Throttle Lever 5.
- **Fire affected engine** Propeller Lever 6.
- **<u>Fire affected engine</u>** Electrical fuel pump 7.
- Heading 8.
- Attitude 9.
- 10. Fire affected engine Field
- 11. Cabin ventilation
- 12. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

8.4 **ELECTRICAL SMOKE IN CABIN ON THE GROUND**

- **MASTER SWITCH** 1.
- Cabin heat and defrost 2.
- **Throttle Lever** 3.
- Ignitions 4.
- **Fuel Selector** 5.
- **Parking Brake** 6.
- **Aircraft Evacuation** 7.

WARNING

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

Page S3 - 52

P2006T - Aircraft Flight Manual P

1	Cabin ventilation	OPEN
2.	Emergency light	ON ON
3.	Standby attitude indicator switch	ON ON
4.	Gain VMC conditions as soon as possible	

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

6. FIELD LH and RH

7. AVIONICS LH and RH

8. CROSS BUS LH and RH

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

9. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

10. MASTER SWITCH

OFF

OFF

OFF

BOTH OFF

11. Land as soon as possible

When on ground:

12. Aircraft Evacuation

carry out as necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

Garmin G950 IFDS - Supplement P2006T - Aircraft Flight Manual

9 UNINTENTIONAL SPIN RECOVERY

Spin behaviour has not been demonstrated since certification process does not required it for this aircraft category.

Intentional spin is forbidden.

Stall with one engine inoperative is forbidden.

Should an unintentional spin occur, the classic recovery manoeuvre is deemed as being the best action to undertake:

- 1. Both engines throttles
- 2. Flight Controls
- 3. Rudder

idle centralize fully against rotation until it stops

10 LANDING EMERGENCIES

10.1 LANDING WITHOUT ENGINE POWER

In case of double engine failure both propellers should be feathered to achieve maximum efficiency. Best glide speed is attained with flap UP and equals V_Y for current aircraft mass and air density altitude. Refer to Section 5, Para. "Enroute Rate of Climb".

K TECNAM

Normal landing gear extension requires MASTER switch ON, an efficient battery and takes around 20 seconds.

LG selection should be appropriately anticipated when sure on final.

Flap can be set to T/O or LAND when sure on final to reduce landing ground roll on short field.

MTOW 1180kg

 $V_Y = 83 KIAS$

Touchdown speed can be as low as 50 kt with flap down.

UP

Select

1. Airspeed

2	Flaps
4.	I Iups

3. Emergency landing field

Emergency landing strip should be chosen considering surface condition, length and obstacles. Wind can be guessed by smoke plumes direction and tree tops or grass bending. Select touchdown direction according to the furrows of a plowed field, not across.

FASTEN and tighten

Set when landing is assured

DOWN when landing is assured

- 4. Safety belts
- 5. Flaps
- 6. Landing gear control lever

To reduce landing gear extension time, evaluate use of emergency control system which requires about 12 sec.

4th Edition, Rev. 0

MTOW 1230 kg

 $V_Y = 84 KIAS$

P2006T - Aircraft Flight Manual Page 83 - 57

Before touch down

- 7. Fuel Selector
- 8. Electrical fuel pump
- 9. Ignitions
- 10. MASTER SWITCH

BOTH OFF BOTH OFF ALL OFF OFF

When stopped

11. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.2 LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

If possible, as a nose landing gear flat tire condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If Nose Landing Gear flat tire is confirmed:

Preparation

- 1. Crew and passengers safety belts
- 2. If time permits
- 3. Flap setting

Before ground contact:

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions

On touch down:

- 7. Landing attitude
- 8. Touchdown speed
- 9. Aircraft nose

After aircraft stops:

10. FIELD LH and RH

11. MASTER SWITCH

Tightly fastened Burn fuel to lower landing weight plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

12. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

10.3 LANDING WITH A KNOWN MAIN LANDING GEAR TIRE DEFLATED

K TECNAM

An asymmetrical landing gear tire condition (RH and/or LH tires deflated) might turn into a hazardous situation, especially on uneven runways.

If possible, as a landing gear tires condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Tightly fastened

plan approach with Flap Land

If a main Landing Gear flat tire is confirmed:

Preparation

- Crew and passengers safety belts 1.
- 2. Flap setting

Before ground contact:

3. Ignitions ALL OFF **BOTH OFF** LH and RH Fuel Selector 4. LH and RH Electrical fuel pump **BOTH OFF** 5. On touch down: Align for approach on the runway centreline 6. Touchdown speed as low as 50 KIAS 7. Touchdown on the good tire gear only 8. Heading and direction applying 9. maintain appropriate aileron and rudder/steering control 10. Flattened tire keep off the ground as long as possible

After aircraft stops (or if runway departure is imminent):

- 11. FIELD LH and RH
- 12. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

13. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

Section 3 – Emergency procedures

LANDING EMERGENCIES

10.4 LANDING WITHOUT BRAKES

If possible, select an airport with suitable runway length. Otherwise, evaluate the possibility to perform a gear up landing (refer to procedure reported on Para. 7.2). In the latter case consider the increasing hazard of an uneven pavement.

1. Safety belts

FASTEN

After touch down if runway is deemed insufficient to decelerate:

2. Fuel Selector	BOTH OFF
3. Electrical fuel pumps	BOTH OFF
4. Ignitions	ALL OFF
5. FIELD LH and RH	BOTH OFF
6. MASTER SWITCH	OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Before end of runway or if runway departure is imminent:

7. Landing gear control lever

UP

After aircraft stops:

8. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

P2006T - Aircraft Flight Manual

11 AIRCRAFT EVACUATION

Leave the aircraft when engines are fully stopped. Watch for engine hot parts and fuel, hydraulic fluid or oil spills when using fuselage doors. If fuselage doors are unserviceable escape through the ditching emergency exit

In case of engine fire escape from opposite or upwind aircraft side.

Verify (if not yet performed):

1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	Electrical fuel pumps	BOTH OFF
4.	MASTER SWITCH	OFF
5.	Parking Brake	ENGAGED
6.		

12 DITCHING

WARNING

Contact with water shall happen with aircraft longitudinal axis and direction of motion parallel to the wave at the minimum possible speed. Keep the nose up as long as possible.

Once in the water, the aircraft shall be evacuated through the ditching emergency exit, if available put life vest on and set dinghy out first. Inflate them only outside the aircraft.

If available, try to approach any existing ship in the vicinity in order to be rapidly located and rescued right after ditching.

- 1. Landing gear
- 2. Safety belts
- 3. Flaps

Before water impact

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions
- 7. MASTER SWITCH
- 8. FIELD LH and RH
- 9. Impact speed

Aircraft evacuation

- 10. Emergency exit handle
- 11. Latch door
- 12. Life vests
- 13. Evacuate the aircraft

UP Tighten and fastened FULL

BOTH OFF BOTH OFF ALL OFF OFF BOTH OFF 50 KIAS

rotate clockwise

push outward

don

Supplement G1: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Apply following page replacement procedure

Supplement G1 – NORMAL PROCEDURES pages replace Basic AFM Section 4 as a whole.

INTENTIONALLY LEFT BLANK

SECTION 4 – NORMAL PROCEDURES

INDEX

1.	INTRODUCTION
1.1.	Normal ops general recommendations3
2.	AIRSPEEDS7
2.1.	Normal operations7
2.2.	Single engine training
3.	Normal procedures checklist9
3.1	Recommendations for cold weather operations9
3.2	Pre-flight check – aircraft walk-around11
3.3	Cockpit inspections
3.4	Engine starting
3.5	Before taxiing
3.6	Taxiing
3.7	Prior to takeoff
3.8	Line-up
3.9	Takeoff and climb 25
3.10	Cruise
3.11	Turbulent air operation
3.12	Descent and approach 27
3.13	Before landing
3.14	Balked landing/missed approach 28
3.15	After landing
3.16	Parking/shut down
3.17	Postflight checks
4.	ADDITIONAL GUIDANCE FOR RNAV GPS
4.1	APPROACH APPLICATIONS
4.2	PBN (RNAV & RNP) OPERATIONAL ELIGIBILITY
5.	Ground towing, parking and mooring 37
5.1.	Towing
5.2.	Parking
5.3.	Mooring

Page S4 - 2

INTENTIONALLY LEFT BLANK

1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2006T* aircraft.

1.1. NORMAL OPS GENERAL RECOMMENDATIONS

The following points should be always brought to attention to pilot/instructor/operator when operating a Tecnam aircraft equipped with variable pitch propeller:

1. Propeller governor ground check.

As prescribed by the propeller/governor manufacturer, a drop of 400/500 propeller RPM should be produced during this check. Its aim is to confirm the governor efficiency, not its complete feathering function.

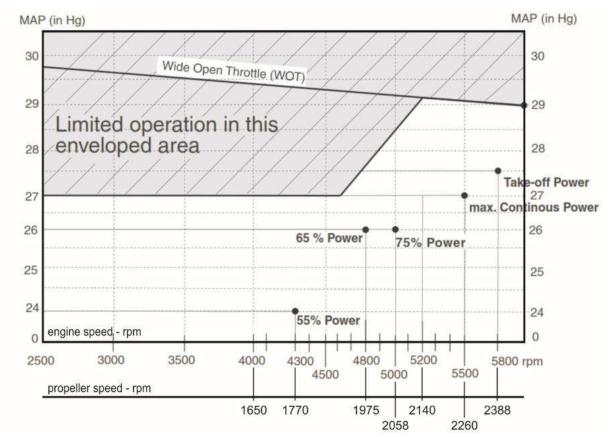
Especially during the first cycle of propeller lever pulling, the governor tendency is to respond to the input with consistent delay, causing the pilot to continue moving back the propeller lever until an abrupt RPM change is observed. This causes an excessive drop in propeller speed that may reach up to 800 RPM in some cases and, consequently, a drop of up to 2000 engine shaft RPM. The long term result is a major wear of engine gearbox, bushings and pistons. In some cases, it may also result in detonation.

In order to avoid these long term adverse effects, the governor ground check should be performed by slowly and gently pulling the propeller lever. The purging cycle should be repeated 3 times, making sure that the governor closely and firmly controls the rpm.

The following recommendations have to be followed during the test:

- propeller speed drops shall be of 400/500 propeller RPM
- the cycle shall be repeated 3 times
- the pilot shall be ready to push the propeller lever if a drop of >500 RPM is recorded

2. Power changes.

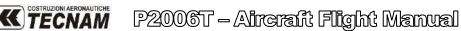

When power setting changes are required in any flight condition, remember the following correct procedure:

□ □ Power increase = FIRST Prop THEN Map

□ □ Power reduction = FIRST Map THEN Prop

P2006T - Aircraft Flight Manual

Useful guideline chart that could be used for best propeller/manifold combination is following reported:


3. Suitable Fuels.

COSTRUZIONI AERONAUTICHE

Tecnam remember operators to fill the aircraft with approved and suitable fuels. Use of not approved/unknown fuels may cause damages to the engine.

ONLY USE APPROVED FUELS

For details refer to Section 2 of this manual (or applicable Supplement) and latest issue of Rotax SI-912-016

G950 system use

For safety reasons, G950 operational procedures must be learned on the ground.

Document Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue, reports detailed instructions to operate the system in subject. Make always reference to the above mentioned document.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

To reduce the risk of unsafe operation, carefully review and understand all aspects of the G950 Pilot's Guide documentation at the last issue and the AFM for the aircraft. Thoroughly practice basic operation prior to actual use. During flight operations, carefully compare indications from the G950 to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc. For safety purposes, always resolve any discrepancies before continuing navigation.

Do not use basemap (land and water data) information for primary navigation. Basemap data is intended only to supplement other approved navigation data sources and should be considered as an aid to enhance situational awareness. Do not use outdated database information. Databases used in the G950 system must be updated regularly in order to ensure that the information remains current. Pilots using any outdated database do so entirely at their own risk. Reference "Garmin G950 Pilot's Guide for the Tecnam P2006T" (P/N 190-01146-XX), last issue, Appendix B concerning SD card use and databases.

For safety reasons, G950 operational procedures must be learned on the ground.

Because of variation in the earth's magnetic field, operating the G950 within the following areas could result in loss of reliable attitude and heading indications.

North of 72° North latitude at all longitudes; South of 70° South latitude at all longitudes; North of 65° North latitude between longitude 75° W and 120° W. (Northern Canada); North of 70° North latitude between longitude 70° W and 128° W. (Northern Canada); North of 70° North latitude between longitude 85° E and 114° E. (Northern Russia); South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand).

Page S4 - 6

The altitude calculated by G950 GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters, such as the GDC 74A Air Data Computer, or other altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by the G950 PFD or other pressure altimeters in aircraft.

NOTE

If the pilot profile is changed during the flight, the HSI could not indicate the correct LOC or VOR indication until the pilot manually tunes the active frequency. Make sure that the displayed indication on the HSI indicator is consistent with the selected frequency.

NOTE The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data. Reference "Garmin G950 Pilot's Guide for the Tecnam P2006T" (P/N 190-01146-XX), last issue, Appendix B concerning SD card use and databases.

NOTE

Use of polarized eyewear may cause the flight displays to appear dim or blank.

2. AIRSPEEDS

2.1. NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations, with reference to both MTOW: 1180 kg and 1230 kg (if Supplement G10 - Increased MTOW @1230 KG - is applicable).

		МТ	OW
	FLAPS	1180kg	1230 kg
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS	65 KIAS
Best Angle-of-Climb Speed (V_X)	0°	73 KIAS	72 KIAS
Best Rate-of-Climb speed (V _Y)	0°	80 KIAS	84 KIAS
Approach speed	T/O	90 KIAS	90 KIAS
Final Approach Speed	FULL	70 KIAS	71 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS	122 KIAS
Never Exceed Speed (V_{NE})	0°	167 KIAS	171 KIAS

2.2. SINGLE ENGINE TRAINING

 V_{SSE} is a speed selected as training aid for pilots in the handling of multi-engine aircraft. It is the minimum speed for intentionally rendering on engine inoperative in flight. This minimum speed provides the margin the manufacturer recommends for us when intentionally performing engine inoperative maneuvers during training. Shutting down an engine for training shall not become a habit; for safety purpose, and in order to optimise training, engine shutdown to perform OEI shall be executed only when necessary and required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or similar).

A simulated feather condition is obtained with propeller lever full forward and throttle lever set at 13.5 in Hg MAP at 70-90 KIAS and 2000-4000 ft (density altitude).

Recommended safe simulated OEI speed (V_{SSE})	70 KIAS
Recommended safe simulated OEI speed (V_{SSE})	70 KIAS

Keep speed above V_{SSE} for simulated OEI training operations.

In normal operations, shutting down an engine for training shall not become a habit, in particular for safety reasons and in order to optimise training; engine shutdown to perform OEI shall be executed only when required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or equivalent rule).

The continuous operation of engine securing for training may indeed cause long term damages to the engine itself due to the high load coming from propeller (which is in feathering angle during the engine re-starting). **ECNAM** P2006T – Aircraft Flight Manual

3. NORMAL PROCEDURES CHECKLIST

3.1 RECOMMENDATIONS FOR COLD WEATHER OPERATIONS

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20° C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15° C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 3.1.

For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to take-off because they will seriously affect airplane performance. Aircraft with ice/snow accumulation is not cleared for flight.

If the aircraft must be operated in cold weather conditions within the range -25°C to -5°C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (warmer than -5°C);
- Let airplane temperature stabilize;
- Check pressure in hydraulic system, recharge if necessary;
- Heat the cabin to a suitable value to avoid windshield frost in flight; an electrical fan heater may be used inside the cabin;
- Tow airplane outside and perform engine starting as soon as possible.

3.2 PRE-FLIGHT CHECK – AIRCRAFT WALK-AROUND

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

NOTE

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Visual inspection is defined as follows: check for defects, cracks, delamination, excessive play, unsafe or improper installation as well as for general condition, presence of foreign objects, slippage markers etc. For control surfaces, visual inspection also involves additional check for freedom of movement. Always check the ground in the area of the aircraft for evidence of fuel, oil or operating fluids leakages.

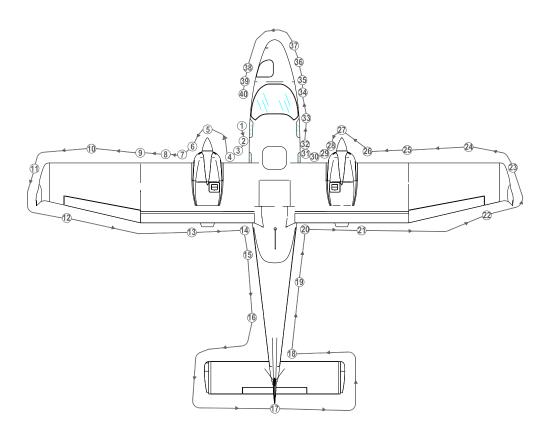


Figure 4.1

COSTRUZIONI A RENNAUTICHE P2006T - Aircraft Flight Manual Page S4 - 12

1	Pilot door and cabin	Check door for integrity. Turn ON the Mas- ter Switch and check Stall Warning switch for operation and condition; check lighting of Landing/Taxi/Nav/Strobe lights, then turn OFF the Master Switch.
2	Left main landing gear	Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slip- page markers integrity, gear structure and shock absorber, hoses, gear door attach- ments and gear micro-switches. There should be no sign of hydraulic fluid leakage.
3	Wheel chock	Remove if employed
4	Propeller and spinner	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.
5	Left engine nacelle	Perform following inspections:
		 a) Check the surface conditions. b) Nacelle inlets and exhausts openings must be free of obstructions. If inlet and outlet plugs are installed, they should be removed. c) Check radiators. There should be no indication of leakage of fluid and they have to be free of obstructions. d) Only before the first flight of a day: (1) Verify coolant level in the expan- sion tank, replenish as required up to top (level must be at least 2/3 of the expansion tank). (2) Verify coolant level in the over- flow bottle through the slot under the nacelle: level must be be- tween min. and max. mark. Re- plenish if required removing the upper cowling; after that, install upper cowling checking for inter- ferences with radiators

Garmin G950 IFDS - Supplement

EXTECNAM P2006T – Aircraft Flight Manual

- (3) Turn the propeller by hand to and fro, feeling the free rotation of 15° or 30° before the crankshaft starts to rotate. If the propeller can be turned between the dogs with practically no friction at all further investigation is necessary. Turn propeller by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression.
- e) Check oil level and replenish as required. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank. Prior to long flights oil should be added so that the oil level reaches the "max" mark.
- f) Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed.
- g) Check drainage hoses clamps
- *h*) Verify all parts are fixed or locked.
- *i)* Verify all inspection doors are closed.

Check engine air inlet for integrity and correct fixing. The air intake filter must be free of obstructions.

Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.

8 Landing and taxi lights

Air induction system

Left fuel tank

6

7

Visual inspection

Garmin G950 IFDS - Supplement

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S4 - 14

9	Left wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for con- dition and free of obstruction. Check stall strip.
10	Left wing top and bottom panels	Visual inspection
11	Left winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing
12	Left aileron and balance mass	Visual inspection, remove tie-down devices and control locks if employed.
13	Left Flap and hinges	Visual inspection
14	Left static port	Remove protective cap – Visual inspection
15	Antennas	Check for integrity
16	Gear pump, external power and battery compartment	Check emergency landing gear extension system pressure (low pressure limit: 20 bar), external power and battery compart- ments closure.
17	Horizontal and vertical empennage and tabs. Static discharge wicks.	Check the actuating mechanism of control surfaces and the connection with related tabs. Check wicks for integrity. Remove tie- down device if employed.
18	Stabilator leading edge	Check for integrity
19	Fuselage top and bottom skin	Visual inspection
20	Right static port	Remove protective cap – Visual inspection
21	Right Flap and hinges	Visual inspection
22	Right aileron and balance weight	Visual inspection, remove tie-down devices and control locks if employed.
23	Right winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing and lighting
24	Right wing top and bottom panels	Visual inspection
25	Right wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for con- dition and free of obstruction. Check stall strip.
26	Right fuel tank	Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked

Garmin G950 IFDS - Supplement

COSTRUZIONA REFORMUTICHE P2006T - Aircraft Flight Manual Page S4 - 15

		closed. Fuel must checked for water and sediment. Verify the tank vent outlet is clear.
27	Propeller and spinner:	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fix- ing and lack of play between blades and hub.
28	Right engine nacelle	Apply check procedure reported in the walk-around station 5 and 6
29	Passenger door and cabin	Check door for integrity. Check safety belts for integrity and baggage for correct posi- tioning and fastening. Check ditching emer- gency exit safety lock. Check passengers ventilation ports for proper setting.
30	Right main landing gear	Apply check procedure reported in the walk- around Station 2
31	Wheel chock	Remove if employed
32	Bottom fuselage antennas	Check for integrity
33	Right cabin ram-air inlet	Visual inspection
34	Right Pitot tube	<i>Remove protective cap and check for any obstruction</i>
35	Nose landing gear	Check tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and retraction mechanism, shock absorber and gear doors attachments. There should be no sign of hydraulic fluid leakage.
36	Radome	Check for integrity
37	Radome access door	Visual inspection
38	Left Pitot tube	<i>Remove protective cap and check for any obstruction</i>
39	Left cabin ram-air inlet	Visual inspection

Avoid blowing inside Pitot-tube and inside airspeed indicator system's static ports as this may damage instruments.

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual P

Page S4 - 16

INTENTIONALLY LEFT BLANK

ECONAM P2006T - Aircraft Flight Manual

Page S4 - 17

3.3 COCKPIT INSPECTIONS

Instruct passengers on how to use safety belts and normal / emergency exits. Passenger embarkation should be done, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges. Do not smoke on board.

Clean the displays using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. Cleaners containing ammonia will harm the anti-reflective coating.

1.	Parking brake	CHECK ENGAGED
2.	AFM and Garmin Pilot's Guide	CHECK on board
3.	Weight and balance	CHECK if within the limits
4.	Flight controls	Remove seat belt used as lock
5.	PFD and MFD	CHECK clean
6.	Seat	Adjust as required
7.	Seat belt	Fastened
8.	Passenger briefing	Completed
9.	Doors	CLOSED AND LOCKED
10.	Landing gear control lever	CHECK DOWN
11.	Breakers	All IN
12.	MASTER SWITCH	ON
13.	Fuel quantity	CHECK
14.	RH fuel selector	RIGHT
15.	LH fuel selector	LEFT
16.	RH Electrical Fuel Pump	<i>ON, check fuel pressure gauge correct operation.</i>
17.	RH Electrical Fuel pump	OFF, check pressure decreased at zero
18.	LH Electrical Fuel Pump	<i>ON, check fuel pressure gauge correct operation.</i>
19.	LH Electrical Fuel pump	OFF, check pressure decreased at zero
20.	Strobe light	ON
21.	Landing gear lights	TEST
22.	ELT	CHECK set to ARM
23.	Fire detector	TEST
24.	Engine levers friction	Adjust if required
25.	Flight controls	CHECK free
26.	Alternate static port	CHECK closed

Section 4 – Normal procedures

NORMAL PROCEDURES checklist

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Pag

- 27. Cabin heat
- **28.** Flaps
- **29.** Pitch trim control
- **30.** Rudder trim control
- **31.** Eng. Starting Battery Voltmeter (if installed)

CLOSED

Operate control to FULL position. Verify extension. Retract flaps. Set to neutral position. Set to neutral position. Check 12 to 14 Volt

Section 4 – Normal procedures

NORMAL PROCEDURES checklist

COSTRUZION AFRONAUTICHE P2006T - Aircraft Flight Manual Pa

Page S4 - 19

INTENTIONALLY LEFT BLANK

3.4 ENGINE STARTING

Avionics switches must be set OFF during engine starting to prevent avionic equipment damage.

1 2	Start clearance CHRONOMETER	Obtain if needed START
Rig	ht engine starting	
1	RH Throttle lever	IDLE
2	RH Carburetor heat	OFF
3	RH Propeller Lever	FULL FORWARD
4	DIICholzo	ON if no quined

4 RH Choke ON if required

NOTE

Cold engine

Throttles idle (fully closed), chokes fully opened. Soon after starting, advance the throttle to let the propeller reach 800 RPM and slowly close the choke. Keep engine at 900 RPM for warm up period.

Hot engine

Park the aircraft with the nose pointing into wind in order to aid cooling. Keep chokes closed and slowly open the throttles one inch while cranking.

Flooded Engine after engine start failure

Keep chokes closed, open throttle fully and start the engine, then quickly reduce throttles to idle

5	RH Electrical Fuel pump	<i>ON, check advisory light ON and posi-</i> <i>tive fuel press build up</i>
6	STROBES	ON
7	RH engine propeller zone	CHECK free
8	RH ignitions switches	BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

W	ARNING	
9	RH start pushbutton	PUSH
10	RH Field	ON
11	RH engine oil gauge	CHECK if increasing within 10 sec. (max 7 bar in cold operation)
12	RH Throttle lever	Advance to reach 1200 RPM
13	RH Choke	OFF
14	RH Avionics	ON
15	RH Cross bus	ON

16	RH Ammeter	CHECK Amps positive
17	Voltmeter	CHECK 12 to 14 Volt
18	Chronometer	Start
Left engir	ne starting	
1	LH Throttle lever	IDLE
2	LH Carburetor heat	OFF
3	LH Propeller Lever	FULL FORWARD
4	LH Choke	ON if required
5	LH Electrical Fuel pump	ON, check advisory light ON and posi- tive fuel press build up
6	LH engine propeller zone	CHECK free
7	LH ignitions switches	BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

WARNING

8	LH start pushbutton	PUSH
9	LH Field	ON
10	LH engine oil gauge	CHECK if increasing within 10 sec. (max 7 bar in cold operation)
11	LH Throttle lever	Advance to reach 1200 RPM
12	LH Choke	OFF
13	LH Avionics	ON
14	LH Cross bus	ON
15	LH Ammeter	CHECK Amps positive

COSTRUZIONI AFROMAUTICHE P2006T - Aircraft Flight Manual

3.5 BEFORE TAXIING

- 1 Let the engines warm up to a minimum oil temperature of 50°C at 1200 RPM
- 2 Nav, Taxi and Landing lights ON
 3 Transponder Stand-by
 4 Passengers and crews seat belts Fastened
- 5 Passengers and crews headphones *Set as required*

3.6 TAXIING

NOTE

Ensure that the main and passengers' doors warning lights are turned off.

1	LH/RH Fuel Selector	As required
2	LH and RH fuel pressure	Monitor
3	Parking Brake	RELEASE
4	Flight instruments	CHECK
5	Engine instruments	CHECK
6	Altimeter	<i>SET both and crosscheck max difference 150 ft</i>
7	Brakes	TEST

3.7 F	RIOR TO TAKEOFF	
1 2 3 4 5	Parking Brake RH Fuel Selector LH Fuel Selector LH and RH fuel pressure LH and RH Engine para	
	• Oil temperature:	90° ÷ 110° C (or 50° ÷ 130 ° C, if MOD2006/002 is applied).
	• CHT / CT:	50° ÷ 135° / 120° C
	• Oil pressure:	2-5 bar (above 1400 RPM): 0.8 bar (below 1400 RPM)
	• Fuel pressure:	2.2 – 5.8 psi (0.15 - 0.40 bar)
		*2.2 – 7.26 psi (0.15 – 0.50 bar)
	*applicable for fuel pu	mp part no.893110 and no.893114
6	LH and RH Generator li	ghts CHECK BOTH OFF
7	LH and RH Propeller Le	ver FULL FORWARD
8	LH and RH Throttle Lev	er 1650 RPM
9	RH Ignitions switches	Set L / R / BOTH (RPM drop with single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM differ- ence by use of either circuits LEFT or RIGHT cannot overcome 50 RPM)
10	RH Propeller Lever	GOVERNOR CHECK a) Reduce prop speed to 1200 RPM; b) move propeller lever back to full for- ward position;

- c) repeat a) and b) 3 times;
- d) verify that the governor closely and firmly controls the RPM;
- e) verify that 1650 prop RPM are restored with prop lever in full forward position.

ence by use of either circuits LEFT or RIGHT cannot overcome 50 RPM)

NOTE

Do not cause the propeller speed drop below 1150 RPM in any case.

11 RH Carburettor heat ON, verify propeller RPM decreasing about 100 RPM **OFF** 12 RH Carburettor heat 13 **RH** engine instruments CHECK parameters if within green arcs Set L / R / BOTH (*RPM drop with single* 14 LH Ignitions switches ignition circuit selected must not exceed 130 prop's RPM; maximum RPM differ-

> **Section 4 – Normal procedures CHECKLISTS**

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S4 - 24

15 LH Propeller Lever

GOVERNOR CHECK

- a) Reduce prop speed to 1200 RPM;
- *b) move propeller lever back to full forward position;*
- c) repeat a) and b) 3 times;
- *d) verify that the governor closely and firmly controls the RPM;*
- *e) verify that 1650 prop RPM are restored with prop lever in full forward position.*

NOTE

Do not cause the propeller speed drop below 1150 RPM in any case.

- 16 LH Carburettor heat
- 17 LH Carburettor heat
- **18** LH engine instruments
- 19 LH and RH Fuel quantity indicator
- 20 Flaps
- 21 Pitch trim and rudder trim
- 22 Flight controls
- 23 Seat belts fastened and doors closed and locked

ON, verify propeller RPM decreasing about 100 RPM OFF CHECK parameters if within green arcs CHECK consistent with fuel plan T/O or as required (see Section 5, Take OFF performances) SET neutral position Check free CHECK

3.8 LINE-UP

- 1 Parking Brake
- 2 Annunciator window
- 3 RH Fuel Selector
- 4 LH Fuel Selector
- 5 Pitot heat
- 6 XPDR
- 7 Magnetic compass
- 8 AHRS

RELEASE, check full in CHECK cautions and warnings OFF RIGHT LEFT as required SET ALT CHECK CROSS CHECK COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual

3.9 TAKEOFF AND CLIMB

- 1 Landing light
- 2 LH and RH Electrical Fuel pump
- 3 Carburettors heat
- 4 LH and RH Propeller Lever
- 5 LH and RH Throttle Lever
- **6** Engines instruments
- 7 Rotation speed

ON BOTH ON CHECK OFF FULL FORWARD FULL POWER Parameters within green arcs

MTOW 1180kg	MTOW 1230 kg
Vr = 64 KIAS	Vr = 65 KIAS

- 8 Apply brakes to stop wheel spinning9 Landing gear control knob
- **10** Landing and taxi lights
 - LH and RH Propeller Lever

UP: check green lights and TRANS light turned OFF within about 20" OFF above 10000 ft Set max cont power at safe altitude

Max take off power must be limited to 5 minutes. Reduce Throttles MAP power before retracting Propeller to 2200 RPM or below.

12 LH and RH Electrical Fuel pump BOTH OFF

11

I

CAU-TION

> It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

> Noteworthily best climb gradient speed (V_X)flaps UP is lower than best climb speed (V_X)flaps T/O up to 6000 ft (density altitude).Refer to Section 5, "Best climb gradient speed" table.

3.10 CRUISE

LH and RH Propeller Lever

SET to 1900-2250 RPM

1

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

- 2 Engine parameters check (LH and RH)
 - Oil temperature: $90^{\circ} 110^{\circ} C$ (or $50^{\circ} - 130^{\circ} C$, if MOD2006/002 is applied).
 - CHT/CT: 50°-135°/50°-120°C
 - Oil pressure: 2 5 bar.
 - Fuel pressure: 2.2 5.8 psi *2.2 – 7.26 psi (0.15 – 0.50 bar)
 - *applicable for fuel pump part no.893110 and no.893114

Carburettor heat as needed (see also instructions addressed on Section 3.

3

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed

check as necessary

NOTE

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.11 **TURBULENT AIR OPERATION**

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

Section 4 – Normal procedures CHECKLISTS

3.12 DESCENT AND APPROACH

1 Propellers

As required

In order to control engine cooling and life, it is preferable to descend with power above idle and RPM lower than full continuous.

- 2 Carburettors heat
- **3** Altimeter setting
- 4 Rear passengers seats

QNH set and crosscheck Set at full aft position

As required

3.13 BEFORE LANDING

NOTE

- 1 Rear passengers seats
- 2 LH and RH Electrical Fuel pump
- **3** On downwind leg:

MTOW 1180kg	MTOW 1230 kg	Flap
$V_{FE} = 119KIAS$	$V_{FE}=122KIAS$	

- 4 Speed below applicable VLO/VLE
- 5 Carburettors heat
- 6 LH and RH Propeller Lever
- 7 On final leg: speed below 93 KIAS
- 8 Final Approach Speed
- **9** Landing and taxi light
- 10 Touchdown speed

Seats set at full aft and lower position BOTH ON

Flaps T/O

Landing gear control knob - DOWN – Check green lights ON CHECK OFF FULL FORWARD Flaps FULL

MTOW 1180kg	MTOW 1230 kg
$V_{APP} = 70KIAS$	$V_{APP}=71KIAS$

ON 65 KIAS ECONAM P2006T - Aircraft Flight Manual

3.14 BALKED LANDING/MISSED APPROACH

LH and RH Propeller Lever
 LH and RH Throttle Lever

FULL FORWARD FULL POWER Page S4 - 28

Propeller Lever increase to max RPM should be attained before engine Throttle Levers are advanced to max take off power. Max take off power must be limited to 5 minutes.

3 4	Flaps Speed	T/O Keep over 62 KIAS, climb to V _Y or V _X
5 6	Landing gear Flaps	as applicable UP as positive climb is achieved UP

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables. Noteworthily best climb gradient speed (V_X)flaps UP is lower than

best climb speed (V_X)flaps T/O up to 6000 ft (density altitude).Refer to Section 5, "Best climb gradient speed" table.

3.15 AFTER LANDING

- 1 LH and RH Electrical Fuel pump
- 2 Flaps
- **3** Pitot Heat
- 4 Landing light

BOTH OFF 0° OFF OFF when required

3.16 PARKING/SHUT DOWN

NOTE	It is always suggested to pa wind to improve cooling aft	ark the aircraft with the nose pointing into er shut down.
1	Parking brake	Engage
2	Taxi light	OFF
3	Engines	Allow for cooling down 1 minute at idle
	C .	power
4	Flaps	Check UP
5	Trims	Check neutral
NOT	Ignition switches	Turn OFF one at a time
7	LH and RH AVIONIC BUS	OFF
8	LH and RH CROSS BUS	OFF
9	LH/RH Field	OFF
10	All external lights switches	OFF
11	Master Switch	OFF
12	Emg Batt / Emg cockpit light /	
	Emg ADI switches	Check OFF

Before disembarkation verify propellers are fully stopped.

Instruct passengers to fully open pax door (against nacelle stop) and depart alongside aircraft fuselage, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Crew should avoid propeller disc area crossing while proceeding alongside a fully opened pilot's door (up to 110°).

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual

3.17 POSTFLIGHT CHECKS

- **1** Protective cover for Pitot tubes, stall warning and static *Install* port plugs.
- 2 Lock one control wheel with safety belt.
- 3 Wheel chocks
- 4 Aileron lock
- 5 Pilot and passengers doors.

Place under MLG Place and tighten Close and latch COSTRUZIONI AEROMAUTICHE P2006T - Aircraft Flight Manual

4. ADDITIONAL GUIDANCE FOR RNAV

Experience of RNAV systems, and Flight FMS in general, has identified the pitfalls of waypoint entry error at the receiver as well as inaccuracies and errors in the database itself.

Research and experience have both shown that human error, often the result of a lack of familiarity with the airborne equipment, represents the major hazard in operations using RNAV systems. Therefore, it is imperative that pilots understand their system thoroughly and are able to determine whether it is safe to proceed.

This requires robust procedures, which check for possible errors in the computer database, monitor continued performance of the RNAV systems and enable pilots to identify and avoid not only their own mistakes but also errors in the information presented to them.

Flight planning on RNAV routes should include the following recommendation.

- During the pre-flight planning phase, given a GPS constellation of 23 satellites or less (22 or less for GPS stand-alone equipment that incorporate pressure altitude aiding), the availability of GPS integrity (RAIM) should be confirmed for the intended flight (route and time). This should be obtained from a prediction program either ground-based, or provided as an equipment function, or from an alternative method acceptable to the Authority;
- Where a navigation data base is installed, the data base validity (current AIRAC cycle) should be checked before flight;
- Traditional navigation equipment (e.g. VOR, DME and ADF) should be selected to available aids so as to allow immediate cross-checking or reversion in the event of loss of GPS navigation capability.

1) Pre-flight Planning

During the pre-flight planning phase, the availability of the navigation infrastructure, required for the intended operation, including any non-RNAV contingencies, must be confirmed for the period of intended operation. Availability of the onboard navigation equipment necessary for the route to be flown must be confirmed. The onboard navigation database must be appropriate for the region of intended operation and must include the navigation aids, waypoints, and coded terminal airspace procedures for the departure, arrival and alternate airfields.

Where the responsible airspace authority has specified in the AIP that dual PRNAV systems are required for specific terminal P-RNAV procedure, the availability of dual P-RNAV systems must be confirmed. This typically will apply where procedures are effective below the applicable minimum obstacle clearance altitude or where radar coverage is inadequate for the purposes of supporting P-RNAV. This will also take into account the particular hazards of a terminal area and the feasibility of contingency procedures following loss of P-RNAV capability.

RAIM availability must be confirmed with account taken of the latest information

COSTRUZIONI A EROMAUTICHE P2006T - Aircraft Flight Manual

2) <u>Departure</u>

At system initialisation, the flight crew must confirm that the navigation database is current and verify that the aircraft position has been entered correctly. The active flight plan should be checked by comparing the charts, SID or other applicable documents, with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will use a specific navigation aid(s), or to confirm exclusion of a specific navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database

The creation of new waypoints by manual entry into the RNAV system by the flight crew is not permitted as it would invalidate the affected P-RNAV procedure.

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion. This may include the insertion in the flight plan of waypoints loaded from the database.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness, by cross-checks, with conventional navigation aids using the primary display

3) <u>Arrival</u>

Prior to the arrival phase, the flight crew should verify that the correct terminal procedure has been loaded. The active flight plan should be checked by comparing the charts with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will exclude a particular navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

Note: as a minimum, the arrival checks could be a simple inspection of a suitable map display that achieves the objectives of this paragraph.

The creation of new waypoints by manual entry into the RNAV system by the flight crew would invalidate the P-RNAV procedure and is not permitted.

Where the contingency to revert to a conventional arrival procedure is required, the flight crew must make the necessary preparation.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness by cross-checks with conventional navigation aids using the primary display

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion.

Although a particular method is not mandated, any published altitude and speed constraints must be observed.

In the event that either the GPS or the EGNOS signal is not available at the destination, by the nature of the system, and its susceptibility to interference, there exists the possibility that it

will also be unavailable over a wide area. Therefore, it is probable that the signal will also be unavailable at a nearby diversion aerodrome.

Notwithstanding any normal operational requirements for the identification of an alternate aerodrome, where a RNAV approach is to be flown in conditions where a visual approach will not be possible; pilots should always ensure that either:

- 1) A different type of approach system is available at the destination, not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach, or;
- 2) There is at least one alternate destination within range, where a different type of approach system is available, which is not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach.

4.1 APPROACH APPLICATIONS

NOTE

When GPS is not approved for the selected final approach course, the message "NOT APPROVED FOR GPS" is displayed. GPS provides guidance for the approach, but the HIS must be switched to a NAV receiver to fly the final course of the approach

NOTE

If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APPR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures.

Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have this designation, meaning the GPS receiver can be used for supplemental navigation guidance only.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Pag

Page S4 - 34

NOTE

If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI

The G950 SBAS GPS allows for flying LNAV and LPV approach service levels according to the published chart.

A sample of how the active approach service level is annunciated on the HSI is shown in the following table:

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using published LNAV minima	351°
LPV (available only if SBAS available)	RNAV GPS approach using published LPV minima	GPS LPV 0 Approach Service Level

Before reaching the IAF, the flight crew should verify that the correct procedure has been loaded into the receiver's route or flight plan. A comparison with the approach chart should be made including the following:

- The waypoint sequence.
- Reasonableness of the tracks and distances of the approach legs, accuracy of the inbound course and mileage of the FAS.
- Verify from the charts, map display or CDU, which waypoints are fly-by and which are fly-over.
- Check any map display to ensure the track lines actually 'fly-over' or 'fly-by' the respective waypoints in the procedure.

By the time the aircraft reaches the IAF the pilot should have completed the above and been cleared for the approach. Also, the approach must have been activated in the receiver at least by this time.

Approach Applications which are classified as RNP Approach (APCH) in accordance with ICAO Doc 9613 Performance Based Navigation (PBN) Manual (and ICAO state Letter SP65/4-10/53) give access to minima (on an instrument approach procedure) designated as:

LNAV (Lateral Navigation)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and an Aircraft Based Augmentation System (ABAS). Receiver Autonomous COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

Integrity Monitoring (RAIM) is a form of ABAS. Lateral guidance is linear with accuracy to within ± -0.3 NM parallel to either side of the final approach track.

LPV (Localiser Performance with Vertical Guidance)

This is an Approach Procedure with Vertical Guidance. The Lateral and Vertical guidance is provided by GPS and SBAS. Lateral and vertical guidance are angular with increasing sensitivity as the aircraft progresses down the final approach track; much like an ILS indication. LPV approach and annunciation on HSI is available only is SBAS available.

Before selecting a LPV approach, make sure SBAS is indicated ACTIVE in the GPS status box on AUX-GPS STATUS page on MFD.

If DISABLED highlight the appropriate SBAS SELECTION Box under SBAS softkey under AUX-GPS Status Page on MFD

Should SBAS signal be lost, augmentation is lost. It may be possible to continue with LNAV only but this is reliant on the availability of RAIM.

NOTE: The instrument approach procedures associated with RNP APCH are entitled RNAV (GNSS) to reflect that GNSS is the primary navigation system. With the inherent onboard performance monitoring and alerting provided by GNSS, the navigation specification qualifies as RNP, however these procedures pre-date PBN, so the chart name has remained as RNAV.

Missed approach procedures

Before commencing an RNAV (GNSS) missed approach, a MAP should be possible without reference to GPS derived navigation so that, in the event of a loss of GPS accuracy or loss of integrity during the approach, a safe return to above Minimum Sector Altitude can be made.

This may be possible by dead reckoning (DR) navigation but where this is not possible and the MAP requires reference to terrestrial navigation aids, these must be available, tuned and correctly identified before passing the IAF and remain available throughout the approach.

Reasons for a missed approach are many and if GPS information remains available for the MAP, the pilot must be able to sequence the system correctly past the MAP, in order to follow the published MAP correctly.

Pilots should be fully competent in the necessary selection routines required by their own equipment, in order to transition to the MAP and preserve accurate navigation throughout.

When GPS navigation is NOT available for the MAP, it may be necessary to reset the display function of the HSI/CDI to disengage GPS information and regain VOR/LOC display. Pilots must be fully conversant with navigation display selections in order safely to follow the MAP.

Abnormal procedures for approaches

As the aircraft approaches the FAF (LNAV Only, without SBAS), the receiver automatically perform a final RAIM prediction for the approach. The receiver will not enter the approach mode if this RAIM prediction is negative. In this case, the approach should be discontinued.

TECNAM P2006T - Aircraft Flight Manual I

Page S4 - 36

However, this RAIM check assumes availability of the full constellation and will not take account of scheduled interruptions or failures. This can lead to a successful RAIM prediction at this point when the RAIM function itself is not available.

If RAIM is lost after passing the FAF the equipment should continue to provide navigation, where possible for five minutes, before giving a RAIM loss indication and this should be enough to complete the approach.

Should RAIM detect an out of tolerance situation, a warning will be given and a missed approach should be initiated immediately

The approach should always be discontinued:

- (a) If the receiver fails to engage the correct approach mode or;
- (b) In case of Loss Of Integrity (LOI) monitoring or;
- (c) Whenever the HSI/CDI indication (or GP indication where applicable) exceeds half scale displacement or;
- (d) If a RAIM (or equivalent) warning is activated or;
- (e) If RAIM (or equivalent) function is not available and annunciated before passing the FAF.

4.2 PBN (RNAV & RNP) OPERATIONAL ELIGIBILITY

The Garmin GNSS navigation system as installed in this airplane is approved for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en- route, terminal area, precision and non-precision approach operations.

Both GNSS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor.

The G950 System has been shown to be eligible for:

- B-RNAV (RNAV-5)
- RNAV1 / P-RNAV (RNP-1) Enroute and Terminal navigation
- RNP APCH LNAV (does not include APV BARO-VNAV operation which is not cleared)
- LPV with SBAS

provided that the G950 is receiving usable navigation information from at least one GPS receiver.

COSTRUZIONI AEROMAUTICHE P2006T - Aircraft Flight Manual

5. **GROUND TOWING, PARKING AND MOORING**

5.1. Towing

When the a/c is moved on the ground, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

5.2. PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake and install control locks
- 3. Secure pilot control wheel by wrapping the seat belt around it.

Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 4.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

5.3. MOORING

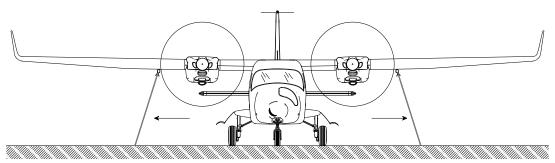
The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

ECONAM P2006T - Aircraft Flight Manual

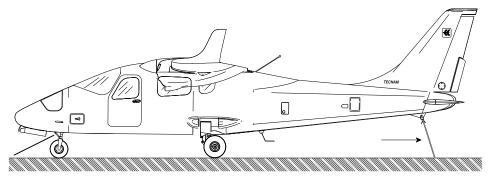
Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind.
- 2. Center nose wheel, engage parking brake and/or use the wheel chocks.



Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.


- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks and protective plugs.
- 7. Close and lock cabin doors.
- 8. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)

Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring – front view

Mooring – side view

4th Edition, Rev. 2

Section 4 – Normal procedures

PARKING and MOORING

Supplement G1: pages replacement instructions

SECTION 5 - PERFORMANCES

See basic AFM - Section 5

INTENTIONALLY LEFT BLANK

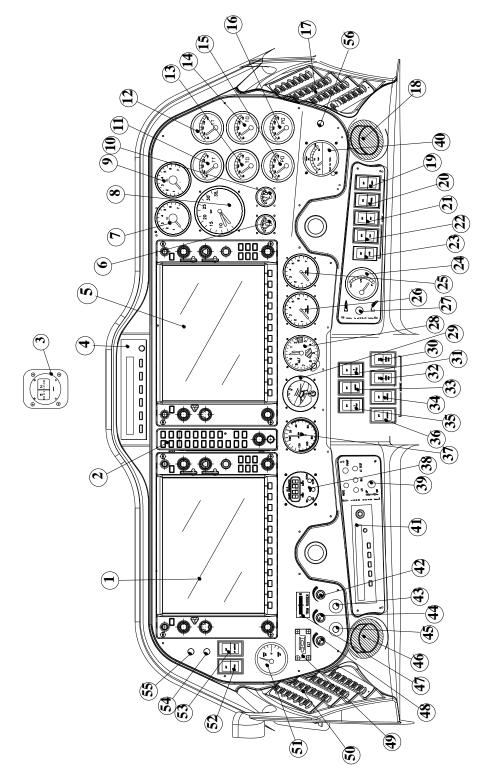
Supplement G1: page replacement instructions

SECTION 6 - WEIGHT AND BALANCE

See basic AFM - Section 6

INTENTIONALLY LEFT BLANK

Supplement G1: page replacement instructions


SECTION 7 - AIRFRAME and SYSTEMS DESCRIPTION

Apply following page replacement procedure:

Supplement G1 – AIRFRAME and SYSTEMS DESCRIPTION page		Basic AFM Section 7 page
S7-37 thru S7-46	REPLACE	7-37 thru 7-44

INTENTIONALLY LEFT BLANK

17. INSTRUMENTS PANEL

GARMIN G950 IFDS - Instruments panel (typical layout)

4th Edition, Rev. 0 Section 7 – Airframe and Systems description

INSTRUMENTS PANEL

Item	Description
1	GDU 1040 (PFD)
2	GMA 1347
3	Compass
4	A/P Programmer/Computer
5	GDU 1040 (MFD)
6	LH fuel quantity indicator
7	LH R.P.M.
8	Dual M.A.P. indicator
9	RH R.P.M.
10	RH fuel quantity indicator
11	LH CHT
12	RH CHT
13	LH Oil Temperature
14	RH Oil Temperature
15	LH oil pressure
16	RH oil pressure
17	RH breakers panel
18	RH ram air inlet
19	Instruments light switch
20	Strobe light switch
21	Navigation light switch
22	Taxi light switch
23	Landing light switch
24	Position flaps indicator
25	RH fuel pressure
26	LH fuel pressure
27	Flap switch
28	Standby Altimeter
29	Standby Attitude indicator
30	RH Cross bus switch

Section 7 – Airframe and Systems description

Item	Description
31	RH Field
32	LH Cross bus switch
33	Master switch
34	RH Avionic switch
35	LH Field
36	LH Avionic switch
37	Standby Airspeed indicator
38	Chronometer
39	LG control knob
40	Voltammeter Indicator
41	ADF control panel
42	Cockpit light dimmer
43	Cabin heat (warm air from RH engine)
44	Avionics lights dimmer
45	Cabin heat (warm air from LH engine)
46	LH ram air inlet
47	Trim rudder indicator
48	Switches built-in lights dimmer
49	ELT Indicator
50	RH breakers panel
51	Pitch trim indicator
52	Pitot heat switch
53	A/P Master switch
54	A/P trim master switch
55	Fire Detector push-to-test
56	LH/RH Ammeter selector switch

INTENTIONALLY LEFT BLANK

18. ELECTRICAL SYSTEM

Primary DC power is provided by two engine-driven generators which, during normal operations, operate in parallel.

Each generator is rated at 14,2-14,8 Vdc, 40 Amp, and it is fitted with an integrated regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by generator failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 38-Ah in 20h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right generator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Generator bus
- RH Generator bus
- LH Avionics bus
- RH Avionics bus

The distribution system operates as a single bus with power being supplied by the battery and both generators but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions is connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both generators. This allows the bus for remaining active also in case of two independent faults in the supply paths.

The following loads are connected to the battery bus:

Battery Bus
GMA 1347 Audio Panel
GIA #1
GDU PFD
Cooling Fan
Converter 1
Standby attitude indicator
LH and RH Fuel electrical pump
LH and RH Fuel pressure
LH and RH Fuel quantity
LH and RH Oil pressure
LH and RH Oil temperature
LH and RH CHT
LH and RH RPM indicator
Cabin lights
Cockpit lights
Switches built-in lights
Avionics lights
Strobe lights
Flaps
Doors pressure switches
Engine hour meter (2 units)
Turn coordinator (A/P slaved)
LG hydraulic pump
LG indicating & control system
LH and RH Fire detector
Chronometer
12V cabin electrical power sockets (2 units)

In addition, directly on the battery, the following devices are connected:

• Emergency back-up attitude indicator (RH attitude indicator – usually supplied from RH generator bus), when installed;

- Emergency Light
- Chronometer

The first two devices are controlled by the pertinent switches located on the LH breakers rack.

The other loads are so divided among following busses:

LH GEN Bus	LH Avionic Bus		
Pitot heat	DME		
Landing light	Transponder		
Taxi light	Encoder altimeter		

RH GEN Bus	RH Avionic Bus
NAV lights	ADF
Rudder trim	COM 2
Stall warning	NAV 2
RH attitude indicator	A/P (*)
	A/P Pitch Trim (*)

(*) if installed

On the central pedestal (see Figure below) there are seven switches disposed on two rows: on the first row there is the MASTER SWITCH which allows for connecting, through the battery relay, the battery to the battery bus.

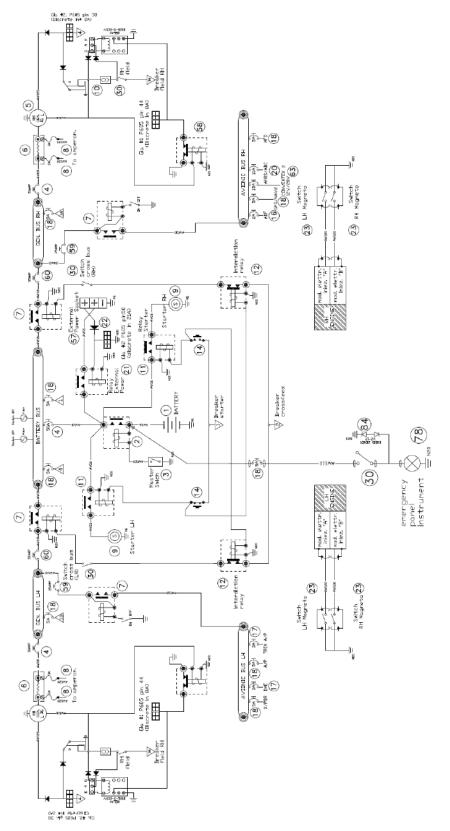
LH and RH FIELD switches control the pertinent generator: setting the switch to OFF puts the pertinent generator off-line.

In correspondence of the second row there are 4 switches LH/RH AVIONIC and LH/ RH CROSS BUS.

Central pedestal switches console

The first two allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

The second ones allow, through a relay, for realizing the parallel connection between the pertinent generator bus and the battery bus. Setting these ones to OFF,



the pertinent generator bus (and related avionic bus supplied) is separated from the battery bus and from opposite generator bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Electric system schematic

ELECTRICAL SYSTEM

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G2 - S-TEC FIFTY FIVE X AUTOPILOT

Record of Revisions

Rev	Revised	Description of	Tecnam Approval		EASA Approval or Under DOA Privileges	
Nev	page	Revision DO OoA	HDO			
0	all	Editorial change	A. Sabino	D. Ronca	M. Oliva	DOA privileges
1	G2-1 G2-2 G2-9	Supplement title and references to Garmin avionics have been changed.	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA ref. EASA.21J.335 MOD2006/357.190226

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029331 (dated 18 March 2010)

Page	Revision	Page	Revision
G2-1	Rev 1	G2-6	Rev 0
G2-2	Rev 1	G2-7	Rev 0
G2-3	Rev 0	G2-8	Rev 0
G2-4	Rev 0	G2-9	Rev 1
G2-5	Rev 0	G2-10	Rev 0

List of Effective Pages

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with S-TEC Fifty Five X autopilot device interfacing Garmin integrated avionics suite.

GENERAL

The System Fifty Five X is a rate based autopilot. When in control of the roll axis, the autopilot senses turn rate, as well as closure rate to the selected course, along with the non-rate quantities of heading error, course error and course deviation indication.

When in control of the pitch axis, the autopilot senses vertical speed, acceleration, and closure rate to the selected glideslope, along with the non-rate quantities of altitude and glideslope deviation indication.

These sensed data provide feedback to the autopilot, which processes them in order to control the aircraft through the use of mechanisms coupled to the control system.

The "autotrim" function senses when the aircraft needs to be trimmed about the pitch axis, and responds by driving the trim servo in the proper direction to provide trim.

The S-TEC "Pilot's Operating Handbook Fifty Five X"(4^{th} Edition – First Revision dated March 01, 2008 or a more updated version) must be carried in the aircraft and made available to the pilot at all time.

NOTE

In accordance with FAA recommendation (AC 00-24B), use of basic "Altitude Hold" mode is not recommended during operation in severe turbulence.

Following operating limitations shall apply when the aircraft is equipped with S-TEC Fifty Five X autopilot:

- The Autopilot is certified for Category I ILS Approaches [with a decision height not lower than 200 feet AGL (61m)]
- Autopilot operation forbidden with flaps extended more than TO position
- During Autopilot operation, a pilot with seat belt fastened must be seated at the left pilot position
- The use of Autopilot during single engine operation is forbidden
- Autopilot DISC during take-off and landing
- Maximum speed for Autopilot operation is 135 KIAS
- Minimum speed for Autopilot operation is 85 KIAS
- Minimum altitude AGL for Autopilot operation is:
 - a. Cruise and Descent: 1000 ft
 - b. Climb after takeoff and not precision approach: 400 ft
 - c. ILS CAT I precision approach: 200 ft

On the instrument panel, in clear view of the pilot, it is placed the following placard reminding the observance of aircraft operating limitations during Autopilot operation:

OPERATING LIMITATIONS FOR AUTOPILOT S-TEC 55X

- · Category I ILS Approaches only (200 ft AGL)
- Do not use AP with flaps extended more than TO position · AP operanting speeds range: 85 to 135 KIAS · Pilot with seat belt fastened must be seated at the left
- pilot position during AP operation · Do not use AP during single engine operation
- · Do not use AP during take-off and landing
- - Min. altitude AGL for Autopilot operation is: Cruise and Descent: 1000 ft Climb after takeoff and not precision approach: 400 ft

EMERGENCY PROCEDURES

NOTE

In event of autopilot malfunction, or when the system is not performing as expected or commanded, take immediately the aircraft control disconnecting the autopilot which must be set inoperative until the failure has been identified and corrected.

Altitude lost during a pitch axis autopilot malfunction and recovery

Following table addresses the altitude lost during a pitch axis malfunction and recovery for each reported flight phase:

Flight phase	Altitude loss
Climb	200 ft
Cruise	150 ft
Descent	200 ft
Maneuvering	50 ft
Approach	80 ft

Autopilot hardover or failure to hold the selected heading

In case of Autopilot hardover or failure to hold the selected heading, apply following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel	GRASP FIRMLY and OVERPOWER if necessary to regain aircraft control
2. AP DISC/TRIM INTR switch	PRESS
3. AP MASTER SWITCH	OFF
4. AP Circuit Breaker	PULL

When Autopilot is disconnected as a consequence of a malfunction, hold the control wheel firmly: it may be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

Electric trim malfunction

In case of Electric Trim malfunction (either in AP Autotrim mode or when manually operated through the Manual Electric Trim Switch), apply following procedure:

1. AP DISC/TRIM INTR switch	PRESS and HOLD
2. TRIM MASTER SWITCH	OFF
3. TRIM Circuit Breaker	PULL
4. AP DISC/TRIM INTR switch	RELEASE

When Autopilot is disconnected because of a pitch trim malfunction, hold the control wheel firmly: it could be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

When electric trim is disconnected, it may be necessary operate the pitch trim through the Trim Wheel.

NOTE

When electric trim is disconnected, Autopilot system can be operated both in pitch and roll modes; nevertheless, when a pitch mode (ALT HOLD, VS, GS) is engaged, the Autopilot will provide an annunciation whenever it is necessary to manually trim the aircraft about the pitch axis using the Trim Wheel. Make reference to S-TEC "Pilot's Operating Handbook Fifty Five X"(4th Edition – First Revision dated March 01, 2008 or a more updated version).

Heading information signal lost

When AP is engaged and the heading information is lost (red X on display field – make also reference to Supplement G1 – Emergency procedures), the AP must be disconnected applying following procedure:

Accomplish items 1 and 2 simultaneously:

1. Airplane control wheel	GRASP FIRMLY and OVERPOWER if necessary to regain aircraft control
2. AP DISC/TRIM INTR switch	PRESS
3. AP MASTER SWITCH	OFF
4. AP Circuit Breaker	PULL

5. Refer to other navigation means for heading information

When Autopilot is disconnected as a consequence of a malfunction, hold the control wheel firmly: it may be necessary up to 35 pounds (15.8 daN) of force on the control wheel to hold the airplane level.

NOTE

When Autopilot is disconnected, it may be necessary operate the pitch trim through either the Manual Electric Trim Switch or the Trim Wheel.

NORMAL OPERATIONS

Normal operating procedures, including pre-flight checks, are described on S-TEC "Pilot's Operating Handbook Fifty Five X" (4th Edition – First Revision dated March 01, 2008 or a more updated version).

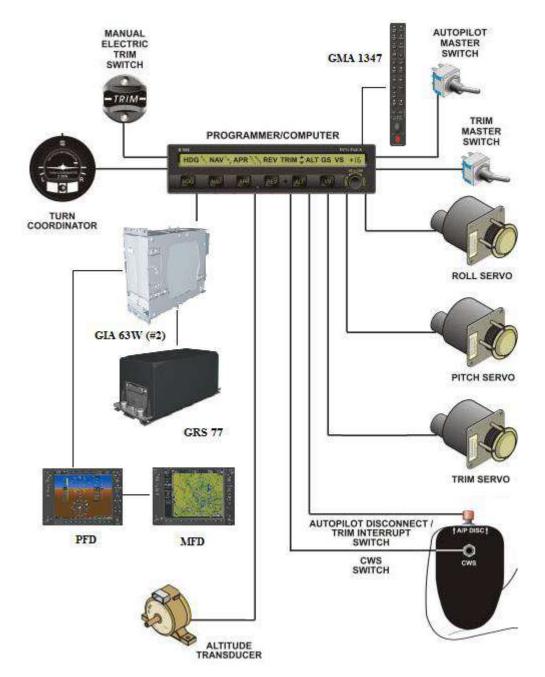
Status/mode annunciations and/or visual representations are simultaneously displayed on both the Garmin avionics (AFCS Status Box and/or PFD) and the S-TEC Fifty Five X Autopilot Display.

Make reference to the applicable Garmin Avionics Pilot's Guide for Tecnam P2006T.

I

The vertical speed mode is used to establish and hold a PILOT selected vertical speed. Since the autopilot receives no airspeed information, it is the responsibility of the pilot to ensure that the vertical speed selection is within the operating limits of the aircraft's capabilities. Selection of a vertical speed beyond the capability of the aircraft can create a condition of reduced airspeed, and possibly lead to a stall condition.

PERFORMANCES


S-TEC Fifty Five X Autopilot employment does not affect the aircraft performances.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

The System Fifty Five X Block Diagram is shown in the following figure.

SUPPLEMENT NO. G3 - KR 87 ADF SYSTEM FOR GARMIN G950

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Nev	page	Revision	DO	OoA	HDO	Privileges
0	all	Editorial change (*)	A. Sabino	C. Caruso	M. Oliva	DOA Privileges

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

List of Effective Pages

Page	Revision	Page	Revision
G3-1	Rev 0	G3-3	Rev 0
G3-2	Rev 0	G3-4	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with ADF KR 87 device in conjunction with Garmin G950 system.

GENERAL

KR 87 is an ADF for navigation with respect to the Non Directional Beacon stations.

LIMITATIONS

ADF KR 87 manuals do not address operating limitations more severe than those usually applicable to the P2006T.

EXTECNAM P2006T - Aircraft Flight Manual

EMERGENCY PROCEDURES

Particular meteorological conditions can distort the equipment indications. Therefore, to avoid false indications about NDB direction, it is necessary to select ANT function in order to query the selected station and to listen to its identification code.

Near electrical interferences (electrical storms), ADF indicator tends to head toward the interferences themselves. Take into account this likelihood when the indicator heads, for example, toward highly cloudy or stormy zones.

Wrong indications could arise also during night flights, near mountainous reliefs and as effect of the coastal refraction.

NORMAL OPERATIONS

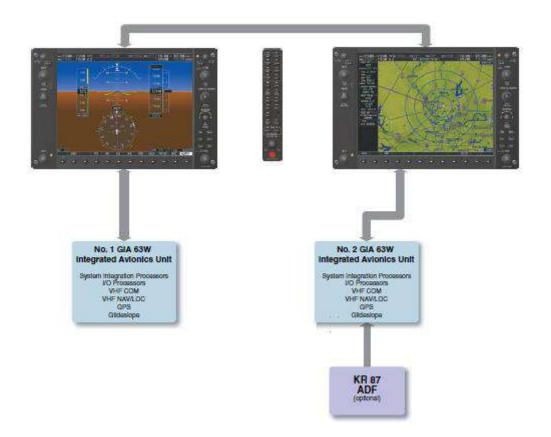
Normal operating procedures are reported on the following documents:

- 1) Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00) last issue.
- 2) ADF system "Pilot's guide and Reference", P/N KIKR87-PG-C last issue.

Bearing information is displayed on the Garmin G950 PFD, to the lower sides of the HSI: the PFD softkeys BRG1 and BRG2 cycles respectively Bearing 1 and Bearing 2 Information Window through the different bearing sources, including ADF/frequency.

Pressing the ADF Key on the GMA 1347 Audio Panel turns ADF receiver audio on or off on the headset/speaker.

PERFORMANCES


ADF KR-87 employment does not affect the aircraft performances.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

Refer to the guide "KR-87" P/N KIKR87-PG-C for a system description. The interface with Garmin G950 is shown on the following Figure.

SUPPLEMENT NO. G4 – KN 63 DME SYSTEM FOR GARMIN INTEGRATED AVIONICS SUITE

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
ĸev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				
1	G4-1 G4-2	Amended title and references to Garmin Integrated Avionics Suite.	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA ref. EASA.21J.335 MOD2006/357.190226

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10029633 (dated 8 April 2010)

List of Effective Pages

Page	Revision	Page	Revision
G4-1	Rev 1	G4-3	Rev 0
G4-2	Rev 1	G4-4	Rev 0

3rd Edition, Rev. 1

Section 9 - Supplements

Supplement no. G4 – KN 63 DME System for Garmin Integrated Avionics Suite

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with DME KN 63 device in conjunction with Garmin Integrated Avionics Suite.

GENERAL

KN 63 is a DME equipment fitted with a remote module interfacing the Garmin Integrated Avionics Suite. Indications are displayed above the PFD BRG1 Information Window.

LIMITATIONS

DME KN 63 manuals do not address operating limitations more severe than those usually applicable to the P2006T.

EMERGENCY PROCEDURES

In determined conditions, near the beacon, DME signal can be lost or distorted. Take into account this likelihood when a beacon approach is performed.

NORMAL OPERATIONS

Normal operating procedures are reported on the applicable Garmin Integrated Avionics Suite Pilot's Guide for Tecnam P2006T – last issue.

Make reference also to "KN 63 Installation Manual ", P/N 006-00176 Rev. 4 dated October 2004.

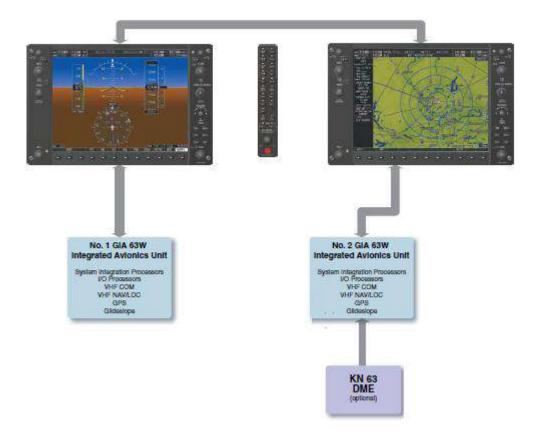
The PFD softkey DME displays the DME Tuning Window, allowing tuning and selection of the DME.

The DME Information Window is displayed above the BRG1 Information Window and shows the DME label, tuning mode (NAV1, NAV2, or HOLD), frequency, and distance. When a signal is invalid, the distance is replaced by "--- NM".

Pressing the DME Key on the GMA 1347 Audio Panel turns DME audio on or off on the headset/speaker.

Supplement no. G4 – KN 63 DME System for Garmin Integrated Avionics Suite

PERFORMANCES


DME KN 63 employment does not affect the aircraft performances.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

Refer to the guide "KN 63 Installation Manual", P/N 006-00176 Rev. 4 dated October 2004 for a complete system description. The interface with Garmin G950 is shown on the following Figure.

Section 9 - Supplements

Supplement no. G4 – KN 63 DME System for Garmin Integrated Avionics Suite

INTENTIONALLY LEFT BLANK

3rd Edition, Rev. 0

Section 9 - Supplements

Supplement no. G4 - KN 63 DME System for Garmin Integrated Avionics Suite

SUPPLEMENT NO. G5 – ENGINE STARTING BATTERY

COSTRUZIONA AFROMANTICHE P2006T - Aircraft Flight Manual

Record of Revisions

Rev	Revised	Description .	oval	EASA Approval or Under DOA		
Nev	page		DO	OoA	HDO	Privileges
0	-	Editorial change (*)	A. Sabino	C.Caruso	M.Oliva	DOA privileges

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10031750 (dated 9 September 2010)

List of Effective Pages

Page	Revision	Page	Revision
G5-1	Rev 0	G5-3	Rev 0
G5-2	Rev 0	G5-4	Rev 0

INTRODUCTION

This section contains information to operate the airplane equipped with a supplemental battery dedicated to engines starting.

GENERAL

The engine starting battery is housed in a dedicated box under the main battery box: both batteries are accessible through the inspection cap F10 on the left side of the tail cone.

LIMITATIONS

See Section 2 of this Manual.

EMERGENCY PROCEDURES

In event of the following failure conditions, addressed on Section 3 of this Manual and leading to fly without power generation system:

- Both generators failure (Para. 3.1)
- Both generators overvoltage (Para 3.3)
- Inflight engine restart (Para 8.2)

apply, at the end of related checklist, following procedure:

EMERG BATT switch

ON

push the Emergency battery switch to ON to avoid a power generation system failure.

NORMAL OPERATIONS

During Cockpit Inspections (see Para. 3.2 – Section 4 of this Manual), perform also following check:

Eng. Starting Battery Voltmeter

CHECK 12 to 14 Volt

PERFORMANCES

See Section 5 of this Manual.

WEIGHT AND BALANCE

For weight and balance, make reference to Section 6 of this Manual; additionally, the equipment list reported on Para. 5 is so integrated:

		AIRCRAFT S/N	DATE:			
Ref.	DESCRIPTION	P/N	INST	Wеіднт [<i>kg]</i>	Акм [м]	
	AVIONICS & MISCELLANEOUS					
A14-1	Engine Starting Battery (EnerSys SBS8)		Χ	2.7	3.7	

SYSTEMS

When airplane embodies the design change in subject, in addition to the main battery, a dedicated engine starting battery is introduced.

The entire primary loads stand connected to the main battery itself and the engine starting battery is recharged by the generators.

This modification is transparent to the crew because it does not change deeply the usual normal and emergency procedures.

Additionally, in event of the overall loss of power generation, the starting battery can be put in parallel with the main battery by means of the EMERG BATT switch activation.

In order to allow the charging status check of the battery, a voltmeter is provided. Pushing the button close to the voltmeter, crew can read the battery status.

Both batteries are accessible through the inspection cap F10 on the left side of the tail cone.

COSTRUCTONA AFRONAUTICHE P2006T - Aircraft Flight Manual

When the design change in subject is embodied, following placards are installed on the airplane:

Description	Placard	Place
Engine starting battery voltme- ter location	Eng. Starting Battery Voltmeter	Close to the voltmeter
Batteries com- partment loca- tion	OPEN HERE 1/4 TURN BATTERIES INSIDE	Fuselage tail cone, left side

SUPPLEMENT NO. G6 – POWER SUPPLY FROM BUILT-IN GENERATORS

Record of Revisions

Rev	Revised	Description of	Tecna	am Appro	m Approval	EASA Approval or Under DOA	
Nev	page	Revision	DO	OoA	HDO	Privileges	
0	all	Editorial change (*)	A. Sabino	C. Caruso	M. Oliva	DOA privileges	

Note (*): this Supplement has been originally issued under EASA Major Design Change Approval no. 10031748, rev 1 (dated 17 November 2010)

List of Effective Pages

Page	Revision	Page	Revision
G6-1	Rev 0	G6-4	Rev 0
G6-2	Rev 0	G6-5	Rev 0
G6-3	Rev 0	G6-6	Rev 0

INTRODUCTION

This section contains information to operate the airplane equipped with built-in generators.

GENERAL

The Rotax engine built-in generators, one for each engine, feed two bus bars.

LIMITATIONS (EASA APPROVED)

Following limitations must apply when the built in generators are operative:

During Take-off, Climb, Landing and Single Engine operations:

LH and RH AUX FIELD switch

BOTH OFF

4th Edition, Rev. 0

Section 9 - Supplements

Supplement no. G6 – POWER SUPPLY FROM BUILT-IN GENERATORS

EMERGENCY PROCEDURES

In event of the following failure conditions (addressed on Section S3 of this Manual):

- Single Engine operations
- Single generator failure (Para. 3.2)
- Single generator overvoltage (Para 3.4)
- Both generators failure (Para. 3.1)
- Both generators overvoltage (Para 3.3)
- Engine securing (Para. 5)
- Electrical system overall failure (Para. 7.1)
- All smoke and fire occurrences (Para 10.1 to 10.5)

apply following procedure:

LH and RH AUX FIELD switch

BOTH OFF

NORMAL OPERATIONS

See Section 4 of this Manual.

PERFORMANCES

See Section 5 of this Manual.

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

When the airplane embodies the design change in subject, the Rotax engine builtin generators are enabled in order to supply power to two bus bars.

Each built-in generator is activated by means of a switch (LH and RH AUX FIELD) located on the LH breakers rack where are located also the breakers related to the auxiliary power generation system.

LH breakers rack: built-in generators field switches and system related breakers (panel type 1)

When panel type 2 is installed (see picture below), each generator field is first excited selecting START on the toggle switch. Then, to allow power generation, toggle switch must be set to ON position.

LH breakers rack: built-in generators field switches and system related breakers (panel type 2)

For both panels, the light (switch built-in light for panel 1) indicates that the electrical power is generated.

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G6 – POWER SUPPLY FROM BUILT-IN GENERATORS

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G6 – POWER SUPPLY FROM BUILT-IN GENERATORS

SUPPLEMENT NO. G7

AFM SUPPLEMENT FOR CIS COUNTRIES OPERATORS

Rev	Revised	Description of	Tecna	ecnam Approval	EASA Approval or Under DOA	
Nev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Record of Revisions

Note (*): this Supplement has been originally issued on 12 November 2010, after EASA Third Country Validation process completion.

Page	Revision	Page	Revision
G7-1	Rev 0	G7-13	Rev 0
G7-2	Rev 0	G7-14	Rev 0
G7-3	Rev 0	G7-15	Rev 0
G7-4	Rev 0	G7-16	Rev 0
G7-5	Rev 0	G7-17	Rev 0
G7-6	Rev 0	G7-18	Rev 0
G7-7	Rev 0	G7-19	Rev 0
G7-8	Rev 0	G7-20	Rev 0
G7-9	Rev 0	G7-21	Rev 0
G7-10	Rev 0	G7-22	Rev 0
G7-11	Rev 0	G7-23	Rev 0
G7-12	Rev 0	G7-24	Rev 0

List of Effective Pages

4th Edition, Rev. 0

Section 9 – Supplements

Supplement no. G7 – AFM Supplement for CIS countries operators

TABLE OF CONTENTS

INTRODUCTION
GENERAL
LIMITATIONS (EASA APPROVED)
Approved maneuvers4
Ambient Temperature4
Flight Altitude
Airfield elevation4
Operation from unpaved runways4
Over-water flights5
Flight crew5
Other placards
EMERGENCY PROCEDURES
Smoke and fire occurrence
Failure of Control System
Loss of Stabilator Control8
Loss of Aileron Control9
Loss of Rudder Control9
One engine inoperative procedures10
Characteristic airspeeds with one engine inoperative
Inflight engine restart 11
Landing emergencies
Landing without engine power 12
Landing on the Airfield 12
NORMAL OPERATIONS
Cold weather operations
Airspeeds for normal operations13
Aircraft walk-around14
Cockpit inspections
Takeoff and climb
Cruise
Balked landing17
PERFORMANCES
Takeoff performances
climb performance (one engine inoperative)20
WEIGHT AND BALANCE
SYSTEMS
Instruments panel

4th Edition, Rev. 0

INTRODUCTION

This supplement applies for CIS countries operators.

GENERAL

This supplement must be placed in EASA Approved P2006T Aircraft Flight Manual Section 9, if the airplane is certified to the CIS configuration. The information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual. For limitations, procedures, and performance information not contained in this supplement, refer to the EASA Approved Aircraft Flight Manual.

4th Edition, Rev. 0

LIMITATIONS (EASA APPROVED)

APPROVED MANEUVERS

Non aerobatic operations include:

- Any manoeuvre pertaining to "normal" flight
- Stalls
- Lazy eights

K TECNAM

- Turns in which the angle of bank is not more than 60°
- Chandelle

Acrobatic manoeuvres, including whip stalls, spins and turns with angle of bank of more than 60°, are not approved for such a category. In addition, stall with one engine inoperative is forbidden.

P2006T - Aircraft Flight Manual

Limit load factor could be exceeded by moving flight controls to maximum deflection at a speed above $V_A=V_O$ (118 KIAS, Manoeuvring Speed).

AMBIENT TEMPERATURE

Ambient temperature: from -25° C to $+40^{\circ}$ C.

FLIGHT ALTITUDE

Flight Altitude limitation: 3000 m (9800ft) and 3600 m (11800ft) for max. 30 minutes.

AIRFIELD ELEVATION

Maximum airfield elevation (Pressure Altitude): less than 2400 m (8000ft).

OPERATION FROM UNPAVED RUNWAYS

Operation from unpaved runways is limited by soil strength of 6 kg per sq. centimeter ($\sigma \ge 6$ kg/cm²).

```
EASA Approved
```

4th Edition, Rev. 0

Section 9 – Supplements

OVER-WATER FLIGHTS

Extended over-water flights are allowed within the limitations prescribed by CIS operational regulations.

FLIGHT CREW

Minimum permitted:1 pilotMaximum people on board:4 people (including pilot)

NOTE

If right control wheel is not removed, right seat may be occupied by the crew member.

EASA Approved

Section 9 – Supplements

4th Edition, Rev. 0

OTHER PLACARDS

Description	Placard	Place
Smoking ban		Instruments panel, right side
Ditching emer- gency exit: opening in- structions	НЕ КУРИТЬ	Ditching emergency exit handle: internal side
Ditaking amon	 Повернуть Сильно толкнуть дверь 	Dishing
Ditching emer- gency exit: opening in- structions	Королики и колоника Каралийный выход на воду 1. Повернуть 2. Сильно толкнуть дверь	Ditching emergency exit handle: external side
Door locking system: by- pass instruc- tions	ГОР ЕМЕРСЕНСУ АССЕЗА 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE ДЛЯ АВАРИЙНОГО ДОСТУПА	Main door and emer- gency exit: external side
	 Для Ават инного доступа Нажать вниз и удержать красный флажок Открыть дверь 	

EASA Approved

Section 9 – Supplements

4th Edition, Rev. 0

Description	Placard	Place
Door locking system: by- pass instruc- tions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	Main door and emer- gency exit: internal side
	ДЛЯ АВАРИЙНОГО ВЫХОДА 1. Нажать вниз и удержать красный флажок 2. Открыть дверь	
Main door: exit instructions	Training of the second s	
	ПРЕДУПРЕЖДЕНИЕ Перед открытием двери убедиться, что винт остановлен Выход в переднюю часть самолета	
Emergency exit label	EMERGENCY EXIT	Emergency exit: inter- nal and external side
	АВАРИЙНЫЙ ВЫХОД	

EASA Approved

Section 9 – Supplements

4th Edition, Rev. 0

EMERGENCY PROCEDURES

SMOKE AND FIRE OCCURRENCE

Use ventilation window in case of smoke in cabin for all cases.

FAILURE OF CONTROL SYSTEM

LOSS OF STABILATOR CONTROL

In case of loss of pilot side stabilator control (disconnected or jammed), apply following procedure:

- 1. Continue the flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Bank angle: not more than 30° during turning.
- 3. Control the aircraft with mechanical trim and engine power setting.

The increase of thrust causes a nose up moment; the decrease of thrust causes a nose down moment. The control by trim operation is related to the trim position: trim UP for aircraft nose Up; trim DOWN for aircraft nose DOWN.

Perform approach and landing only in cruise configuration (Flap 0° *).*

It is necessary to move the landing gear in down position before starting the glide and to balance the aircraft with trim and thrust.

It is possible to correct the glide path by trim operation to minimize the thrust engines changes.

Only after touchdown it is possible to move the engine controls in idle position.

Land as soon as possible.

4th Edition, Rev. 0

Section 9 – Supplements

LOSS OF AILERON CONTROL

In case of loss of pilot side aileron control (disconnected or jammed), apply following procedure:

- 1. Continue flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Control the airplane bank angle by means of the rudder.
- 3. Bank angle: not more than 30° during turning.
- 4. Land as soon as practical.

Perform approach and landing only in cruise configuration (Flap 0°). Perform approach and landing with crosswind trend type landing.

LOSS OF RUDDER CONTROL

In case of loss of pilot side rudder control (disconnected or jammed), apply following procedure.

- 1. Continue flight at the speed of 80 85 KIAS due to the aircraft weight in cruise configuration.
- 2. Control airplane bank angle by means of ailerons.
- 3. Bank angle: not more than 30° during turning.
- 4. Land as soon as practical.

Perform approach and landing only in cruise configuration (Flap 0°). Perform approach and landing with crosswind trend type landing.

4th Edition, Rev. 0

Section 9 – Supplements Supplement no. G7 – AFM Supplement for CIS countries operators

ONE ENGINE INOPERATIVE PROCEDURES

NOTE

K TECNAM

The ineffectiveness of one engine results in an asymmetric traction condition which tends to yaw and to bank the aircraft. In this condition it is essential to maintain the direction of flight compensating the lower traction through the operating engine and counteracting the yawing effects through the use of pedals and rudder trim. To improve the efficiency, it is preferred to bank the aircraft to the side of the operating engine by about 5° .

P2006T - Aircraft Flight Manual

Depending upon the circumstances that may arise, apply the emergency procedure as below.

CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERA-TIVE

In case of one engine inoperative condition, pilot shall take into account the airspeeds shown below:

Conditions	Speed (KIAS)
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62
Best rate-of-climb speed with flaps set to T.O. (V_Y)	70
Best rate-of-climb speed with one engine inoperative with flaps set to $0^{\circ}(V_{YSE})$	80 (1180kg) 78 (1080kg) 75 (980kg)

Perform approach and landing only with flap set at 0° *.*

4th Edition, Rev. 0

Section 9 – Supplements

INFLIGHT ENGINE RESTART

K TECNAM

It is preferred to restart the engine at an altitude below 4000ft and at the suggested speed of 80 KIAS or more

P2006T - Aircraft Flight Manual

- 1. Carburettor heat
- 2. Electrical fuel pump
- 3. Fuel quantity indicator
- 4. Fuel Selector
- 5. FIELD
- 6. Ignition
- 7. Operating engine Throttle Lever
- 8. Stopped engine Throttle Lever
- 9. Stopped engine Propeller Lever
- 10. Start push-button
- 11. Propeller Lever
- 12. FIELD
- 13. Engine throttle levers

ON if required ON CHECK CHECK (Crossfeed if required) OFF BOTH ON IDLE (only if practical) IDLE FULL FORWARD PUSH SET at desired rpm ON SET as required

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

NOTE

After starter engagement during in-flight engine restart, PFD indication may be temporarily lost. PFD Attitude recovery can last up to 3-4 minutes. During attitude recovery it is necessary to maintain level straight-line flight.

In case of unsuccessful engine restart:

- 1. SECURE engine (see *engine securing procedure* on Para. 5)
- 2. **Land as soon as practical** applying *one engine inoperative landing* procedure. See Para. 8.6

In case of successful engine restart:

1. Land as soon as practical

After engine restart, if practical, moderate propeller rpm to allow the temperatures for stabilizing in the green arcs.

4th Edition, Rev. 0

Section 9 – Supplements

LANDING EMERGENCIES

LANDING WITHOUT ENGINE POWER

Landing on the Airfield

Both engines failure condition requires both propellers feathered and aircraft attitude set to maximum efficiency until the selection of the field, on which to perform an emergency landing, is made.

1.	Airspeed (VY+4kts)	84 KIAS (1180kg)
		82 KIAS (1080kg)
		79 KIAS (980kg)
2.	Flaps	Only 0°
3.	Landing gear control lever	DOWN

To shorten the landing gear extension time, evaluate the possibility to use the emergency extension control. In this way the time required to complete the extension is shorter by about 8 sec.

- 4. Select landing field (check for obstacles and wind)
- 5. Safety belts FASTEN Before touch down BOTH OFF **Fuel Selector** 6. Electrical fuel pump BOTH OFF 7. Ignitions ALL OFF 8. MASTER SWITCHES ALL OFF 9.

Emergency Landing outside of airfield shall be performed with landing gear retracted and starting flaps extension in FULL configuration at 50 ft of altitude. To reach the maximum gliding distance at the optimal airspeed above mentioned, and to reduce the loss of altitude during a 180° turn, turn with 30° bank angle.

The distance covered in correspondence of the optimal speed V_Y is about 4000 meters by 1000ft of altitude.

The loss of altitude, when a 180° turn is performed with bank angle of 30°, is about 200ft in correspondence of V_Y .

4th Edition, Rev. 0

Section 9 – Supplements

NORMAL OPERATIONS

COLD WEATHER OPERATIONS

If the aircraft is operated in cold weather conditions (from -25°C till -5°C) it is necessary to perform following procedures:

- Heat the cabin to +25°C to avoid windshield frost in flight
- Heat the engines with external source to $+ 20^{\circ}$ C
- Check the pressure in hydraulic system, recharge if necessary

AIRSPEEDS FOR NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations.

	FLAPS	1180kg (2600lb)
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS
Speed over a 15 meters obstacle (V_{obs}) Take Off	T/O	70 KIAS
Best Angle-of-Climb Speed (V_X)	0°	80 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS
Approach speed	T/O	90 KIAS
Speed over a 15 meters obstacle (Vobs) Landing	T/O	70 KIAS
Final Approach Speed	FULL	70 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS
Never Exceed Speed (V _{NE})	0°	167 KIAS

For training purposes, keep speed above following reference data before setting one engine to *zero* thrust condition (i.e. propeller lever full forward and throttle lever set at 15 mmHg MAP):

Safe single engine speed with flaps T/O (V_{SSE})	70 KIAS
Safe single engine speed with flaps 0° (V_{SSE})	80 KIAS (1180kg) 78 KIAS (1080kg) 75 KIAS (980kg)

4th Edition, Rev. 0

Section 9 – Supplements

AIRCRAFT WALK-AROUND

In addition to the aircraft walk-around checklist reported on basic AFM, Section 4, perform following checks:

Left and right wing leading edge *Check stall strip.*

4th Edition, Rev. 0

Section 9 – Supplements

WTECNAM P2006T - Aircraft Flight Manual

COCKPIT INSPECTIONS

Make sure that passengers are familiar with the safety belts and emergency exits employment and that they do not smoke on board. Passengers boarding, paying attention to the propeller disc, is under the pilot's responsibility.

Clean the displays using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. Cleaners containing ammonia will harm the anti-reflective coating.

- 1. Parking brake
- 2. AFM and Garmin Pilot's Guide
- 3. Weight and balance
- 4. Flight controls
- 5. PFD and MFD
- 6. Seat
- 7. Seat belt
- 8. Passenger briefing
- 9. Doors
- 10 Landing gear control lever
- **11** Breakers
- **12** MASTER SWITCH
- 13 Fuel quantity
- 14 RH fuel selector
- **15** LH fuel selector
- **16** RH Electrical Fuel Pump
- 17 RH Electrical Fuel pump
- **18** LH Electrical Fuel Pump
- **19** LH Electrical Fuel pump
- 20 Strobe light
- **21** Landing gear lights
- 22 ELT
- 23 Fire detector
- **24** Engine levers friction
- 25 Flight controls
- 26 Alternate static port
- 27 Cabin heat
- 28 Flaps
- 29 Pitch trim control
- 30 Rudder trim control

CHECK ENGAGED CHECK on board CHECK if within the limits Remove seat belt used as lock CHECK clean and set altitude displaying in meters (see G950 Pilot's Guide) Adjust as required Fastened *Completed* CLOSED AND LOCKED CHECK DOWN All ON ON CHECK RIGHT LEFT ON, check fuel pressure gauge correct operation. OFF, check pressure decreased at zero ON, check fuel pressure gauge correct operation. OFF, check pressure decreased at zero ON TEST CHECK set to ARM TEST Adjust if required CHECK free CHECK closed **CLOSED** Operate control to FULL position, verifying extension. Then retract flaps. Set to neutral position.

Set to neutral position.

4th Edition, Rev. 0

Section 9 – Supplements

TAKEOFF AND CLIMB

1 Call TWR for takeoff 2 Check for clear final and wind on run-Direction and intensity way 3 LH and RH Electrical Fuel pump BOTH ON 5 Carburettors heat CHECK OFF 8 LH and RH Propeller Lever FULL FORWARD 9 LH and RH Throttle Lever FULL THROTTLE (about 2400 \pm 100 *propeller rpm*) Parameters within green arcs 10 Engines instruments Vr = 64 KIAS11 Rotation speed 12 Rotation and takeoff Apply slightly brakes to stop wheel 13 spinning 14 Landing gear control knob UP: check green lights and TRANS light turned OFF Speed over obstacle 70KIAS 15 Flaps 0° at 300 ft (AGL) 16 21 Landing and taxi lights **OFF** 17 Establish climb rate Above 80 KIAS Trim adjustment 18 LH and RH Propeller Lever 19 Set at 2250 rpm (after reaching safe altitude) BOTH OFF 20 LH and RH Electrical Fuel pump

CRUISE

Flights in the CIS airspace are allowed only along the routes with continuous ATC monitoring using RBS mode in VHF covering zones.

- Reach cruise altitude 1 Set throttle and rpm as required for the cruise 2 LH and RH Propeller Lever SET to 1900-2400 rpm 3 4 Trim As required 5 Engine parameters check (LH and RH) • Oil temperature: 90°÷110 ° C. • CHT: $90^{\circ} \div 110 \ ^{\circ}C$ • Oil pressure: 2 - 5 bar. $2.2 - 5.8 \, psi \, (0.15 - 0.40 \, bar)$ • Fuel pressure:
- 6 Carburettor heat as needed (see also instructions addressed on Section 3)

4th Edition, Rev. 0

Section 9 – Supplements

BALKED LANDING

- 1 LH and RH Throttle Lever
- 2 LH and RH Propeller Lever
- 3 Speed
- 4 Flaps
- 5 Landing gear
- 6 Carburettor heat
- 7 LH and RH Electrical Fuel pump

FULL THROTTLE FULL FORWARD Over 70 KIAS T/O UP CHECK OFF CHECK ON

4th Edition, Rev. 0

Section 9 – Supplements

PERFORMANCES

TAKEOFF PERFORMANCES

Takeoff ground roll

CONDITIONS:

- Flaps: T/O
- Throttle levers: FULL FORWARD
- Runway: paved

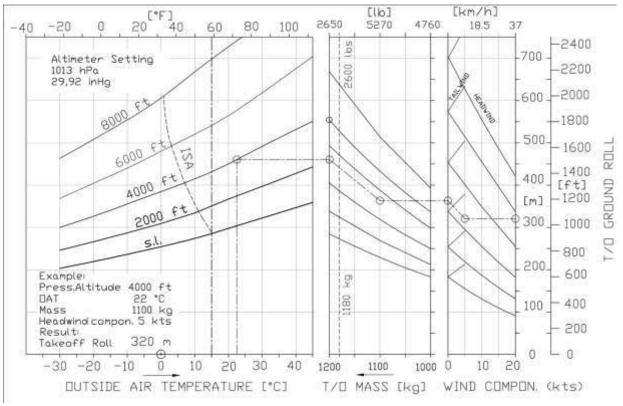


Figure 1 - Takeoff ground roll

In case of headwind, the takeoff run decreases by 2.5m for each knot of wind (8 ft/kt).

In case of tailwind, the takeoff run increases by 10m for each knot of wind (33 ft/kt).

Measurement distances for short grass (less than 2 inches) must be increased of 10% Measurement distances for high grass (more than 2 inches) must be increased of 15%

A rising runway with a gradient of 1% causes an acceleration decreasing of the same intensity and, consequently, the takeoff run increases by 5%.

4th Edition, Rev. 0

Section 9 – Supplements

Takeoff distance

CONDITIONS:

- Flaps: T/O
- Throttle levers: FULL FORWARD
- Runway: paved

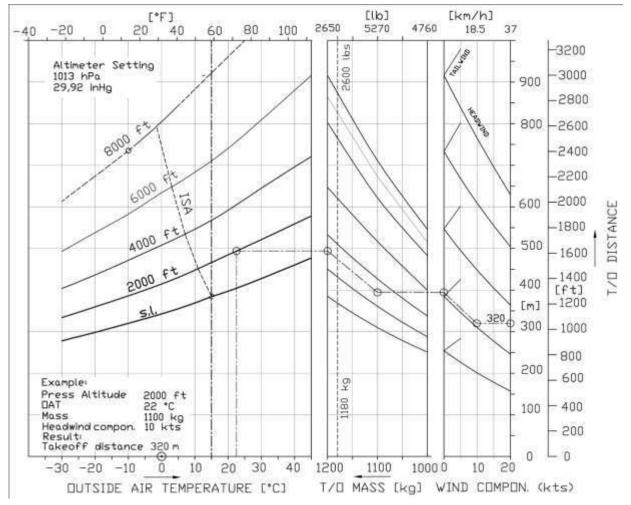


Figure 2 - Takeoff distance (50 ft. Obs)

NOTE

In case of headwind, the takeoff run decreases by 4m for each knot of wind (13 ft/kt).

In case of tailwind, the takeoff run increases by 14m for each knot of wind (40 ft/kt).

Take off roll measurement distances for short grass (less than 2 inches) must be increased of 10%

Take off roll measurement distances for high grass (more than 2 inches) must be increased of 15%

A rising runway with a gradient of 1% causes a takeoff run increasing by about 4%.

4th Edition, Rev. 0

Section 9 – Supplements

CLIMB PERFORMANCE (ONE ENGINE INOPERATIVE)

TECNAM P2006T - Aircraft Flight Manual

CONDITIONS:

- AC Clean configuration
- One engine inoperative
- Max Cont. Power Airspeed:

Weight [kg]	V _{SSE} [KIAS]
1180	80
1080	78
980	75

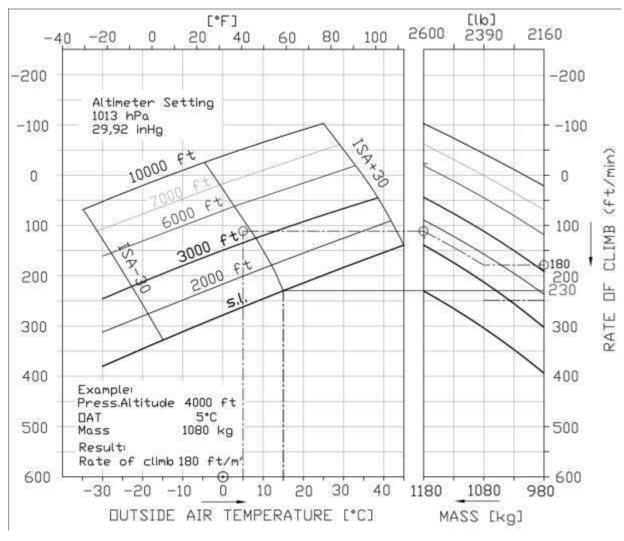
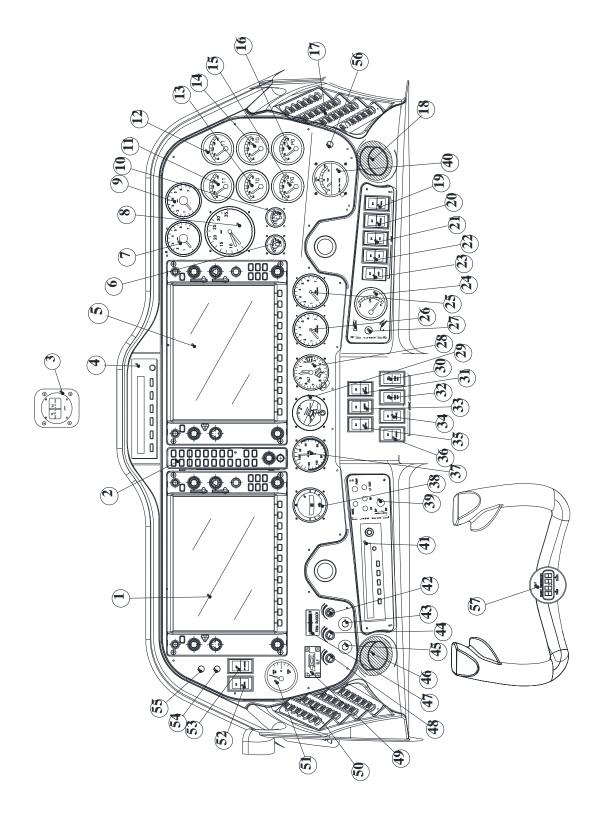


Figure 3 – Rate of Climb (one engine inoperative)

4th Edition, Rev. 0

Section 9 – Supplements

WEIGHT AND BALANCE


For weight and balance, make reference to Section 6 of this Manual.

4th Edition, Rev. 0

Section 9 – Supplements

SYSTEMS

INSTRUMENTS PANEL

Instruments panel (typical layout)

4th Edition, Rev. 0

Section 9 – Supplements

Item	Description
1	GDU 1040 (PFD)
2	GMA 1347
3	Compass
4	A/P Programmer/Computer
5	GDU 1040 (MFD)
6	LH fuel quantity indicator
7	LH R.P.M.
8	Dual M.A.P. indicator
9	RH R.P.M.
10	RH fuel quantity indicator
11	LH CHT
12	RH CHT
13	LH Oil Temperature
14	RH Oil Temperature
15	LH oil pressure
16	RH oil pressure
17	RH breakers panel
18	RH ram air inlet
19	Instruments light switch
20	Strobe light switch
21	Navigation light switch
22	Taxi light switch
23	Landing light switch
24	Position flaps indicator
25	RH fuel pressure
26	LH fuel pressure
27	Flap switch
28	Standby Altimeter
29	Standby Attitude indicator

4th Edition, Rev. 0

Section 9 – Supplements

Item	Description
30	RH Cross bus switch
31	RH Field
32	LH Cross bus switch
33	Master switch
34	RH Avionic switch
35	LH Field
36	LH Avionic switch
37	Standby Airspeed indicator
38	Side slip indicator
39	LG control knob
40	Voltammeter Indicator
41	ADF control panel
42	Cockpit light dimmer
43	Cabin heat (warm air from RH engine)
44	Avionics lights dimmer
45	Cabin heat (warm air from LH engine)
46	LH ram air inlet
47	Trim rudder indicator
48	Switches built-in lights dimmer
49	ELT Indicator
50	RH breakers panel
51	Pitch trim indicator
52	Pitot heat switch
53	A/P Master switch
54	A/P trim master switch
55	Fire Detector push-to-test
56	LH/RH Ammeter selector switch
57	Chronometer

4th Edition, Rev. 0

Section 9 – Supplements

SUPPLEMENT NO. G8

BRAZILIAN AIRCRAFT FLIGHT MANUAL SUPPLEMENT

(EASA APPROVED)

4th Edition, Rev. 0

Record of Revisions

Rev	Revised	Description of	Tecnam Approval		EASA Approval or Under DOA	
Nev	page	Revision	DO	OoA	HDO	Privileges
0	-	See Note (*)				

Note (*): this Supplement has been originally issued on 4 March 2011, after EASA Third Country Validation process completion.

List of Effective Pages

Page	Revision	Page	Revision
G8-1	Rev 0	G8-6	Rev 0
G8-2	Rev 0	G8-7	Rev 0
G8-3	Rev 0	G8-8	Rev 0
G8-4	Rev 0	G8-9	Rev 0
G8-5	Rev 0	G8-10	Rev 0

TABLE OF CONTENTS

INTRODUCTION	4
GENERAL	4
LIMITATIONS	5
Approved fuel	5
VHF/COMM system	5
GPS systems	6
GPS operation (for airplanes with autopilot installed)	6
GPS operation (for airplanes without autopilot installed)	7
WAAS and SBAS functionalities:	7
Placards in portuguese	8

INTRODUCTION

This supplement applies for Brazilian registered aircraft.

GENERAL

Information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual when the aircraft is registered in Brazil.

For limitations, procedures, and performance information not contained in this Supplement, refer to the basic Aircraft Flight Manual.

4th Edition, Rev. 0

LIMITATIONS

APPROVED FUEL

APPROVED FUEL:

AVGAS 100 LL (ASTM D910)

Use of automotive gasoline (MOGAS) is not allowed for operation in Brazil.

Use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

VHF/COMM SYSTEM

When operating the VHF/COMM system in Brazilian air space, the selection of the channel spacing of 8.33 kHz can cause the loss of communication with the Air Traffic Control (ATC).

4th Edition, Rev. 0

GPS SYSTEMS

GPS OPERATION (FOR AIRPLANES WITH AUTOPILOT IN-STALLED)

- Use of GPS for precision approach navigation mode is not allowed.

- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;

- Navigation using of the GPS system as the source of information is limited to IFR en route, terminal area and non-precision approach mode;

- During IFR in terminal area or non-precision approach using GPS, autopilot or flight director must be coupled to GPS.

- If RAIM function becomes unavailable in "en route" phase of flight, position must be verified every 15 minutes using other IFR approved navigation system;

- During IFR in terminal area or non-precision approach using GPS, in case RAIM function becomes unavailable, the GPS navigation must be discontinued;

- Before an IFR non-precision approach using GPS, the availability of the RAIM function must be checked to the time and place predicted (RAIM prediction). If predicted the unavailability of the RAIM function, navigation must be planned with others approved navigation systems;

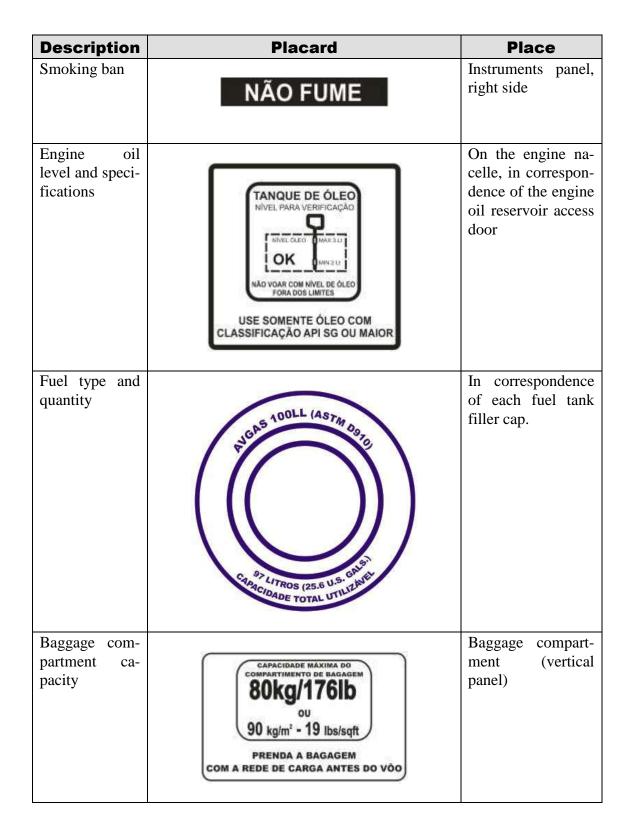
- Before a non-precision approach using GPS, the database information must be compared with that in the approach chart, including transitions, position and altitude of waypoints;

- IFR non-precision approach using GPS must be based on the approved procedures of the equipment database. It cannot be done based on data manually included.

GPS OPERATION (FOR AIRPLANES WITHOUT AUTOPILOT IN-STALLED)

- Use of GPS for precision approach navigation mode is not allowed.

- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;


- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;

- If RAIM function becomes unavailable in en route phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

WAAS AND SBAS FUNCTIONALITIES:

The WAAS and SBAS functionalities are not available in Brazil and these functions are not tested or approved in Brazilian air space.

PLACARDS IN PORTUGUESE

4th Edition, Rev. 0

Section 9 – Supplements Supplement no. G8 – BRAZILIAN AFMS

Description	Placard	Place
Ditching emer- gency exit: opening in- structions	DUSO NOTA POUSO NA	Ditching emer- gency exit handle: external side
Ditching emer- gency exit: opening in- structions	DE EMERGENCIP POUSO POIS VIDY VIDY VIDY	Ditching emer- gency exit handle: internal side
Door locking system: by- pass instruc- tions	PARA ACESSO DE EMERGÊNCIA 1. EMPURRE A TRAVA VERMELHA PARA BAIXO E SEGURE 2. ABRA A PORTA COM A MAÇANETA	Main door and emergency exit: external side
Door locking system: by- pass instruc- tions	PARA SAÍDA DE EMERGÊNCIA 1. EMPURRE A TRAVA VERMELHA PARA BAIXO E SEGURE 2. ABRA A PORTA COM A MAÇANETA	Main door and emergency exit: in- ternal side

Description	Placard	Place
Main door: exit instructions	ADVERTÊNCIA Verifique se as helices estão paradas antes de abrir a porta Saida em direção à frente da aeronave	Main door, internal side
Emergency exit label	SAÍDA DE EMERGÊNCIA	Emergency exit: internal and exter- nal side
Towing maxi- mum turning angle	<u>CUIDADO</u> Ângulo de giro máximo do reboque 20° do centro para cada lado	Nose landing gear front door

Page G9-1

SUPPLEMENT NO. G9

CHINESE AIRCRAFT FLIGHT MANUAL SUPPLEMENT

(EASA APPROVED)

4th Edition, Rev. 0

Page G9-2

Record of Revisions

Rev	Revised page		Tecnam Approval			EASA Approval or Under DOA
			DO	OoA	HDO	Privileges
0	-	First issue	P. Violetti	M. Oliva	L. Pascale	Third Country Validation

List of Effective Pages

Page	Revision	Page	Revision
G9-1	Rev 0	G9-7	Rev 0
G9-2	Rev 0	G9-8	Rev 0
G9-3	Rev 0	G9-9	Rev 0
G9-4	Rev 0	G9-10	Rev 0
G9-5	Rev 0	G9-11	Rev 0
G9-6	Rev 0	G9-12	Rev 0

TABLE OF CONTENTS

INTRODUCTION	
GENERAL	
LIMITATIONS	5
Approved fuel	5
Placards in Chinese	
NORMAL OPERATIONS	10
Cold weather operations	

INTRODUCTION

This supplement applies for Chinese registered aircraft.

GENERAL

Information contained herein complements the basic information in the EASA Approved Aircraft Flight Manual when the aircraft is registered in China.

For limitations, procedures, and performance information not contained in this Supplement, refer to the basic Aircraft Flight Manual.

APPROVED FUEL

LIMITATIONS

- MOGAS compliant with PRC National Standard GB17930-2006 Octane Rating (RON) 97
- MOGAS ASTM D4814
- MOGAS EN 228 Super/Super plus (min. RON 95)
- AVGAS 100 LL (ASTM D910)

Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

PLACARDS IN CHINESE

Description/Place	Placard	Chinese
Smoking ban.		禁止吸烟
Instruments panel, right side	NO SMOKING	
Engine oil level and specifications. On the engine nacelle, in correspondence of the engine oil reser- voir access door	OIL TANK CHECK LEVEL OIL LEVEL MAX 3LT OK MIN 2LT DO NOT FLY WITH OIL LEVEL OUT OF LIMITS USE ONLY OIL WITH API CLASSIFICATION SG OR HIGHER	滑油箱 检查油位 滑油油位 最大 3Lt OK 最低 2Lt 滑油油位超出限制时,禁止飞行。 只允许使用API规定的或更高级别的滑油。
Fuel type and quanti- ty. In correspondence of each fuel tank filler cap.	OCLOSE RATING (ROA)/93 OCLOSE 100LL (ASTATOSICO AS ASTM DAS 00 LIGAS 100LL (ASTATOSICO AS AST 00 LIGAS 100LL (ASTATOSICO AS AST 100 LIGAS 100LL (ASTATOSICO ASTATOSICO ASTATO	 GB17930 97号车用汽油-ASTM D4814车用汽油 航空汽油 100LL (ASTM D910) 97升 (25.6 U.S. 加仑)
Baggage compartment capacity. Baggage compartment (vertical panel)	MAX BAGGAGE LOAD 80kg/176lb MAX. SPEC. PRESS. 0.9 kg/dm ² - 19 lbs/sqft FASTEN THE BAGGAGES WITH CARGO NET BEFORE FLIGHT	 合计可用容量 最大行李载荷 80kg/176磅 最大规定压强 0.9 kg/dm2-19lbs/sqft 飞行前用行李网固定行李。

WTECNAM P2006T - Aircraft Flight Manual

4th Edition, Rev. 0

Section 9 – Supplements

Supplement no. G9 – CHINESE AFMS

Description/Place	Placard	Chinese
Ditching emergency exit: opening instruc- tions. Ditching emergency exit handle: internal side	A LINE OF THE REAL	水上追降应急出口 1、旋转。 2、平稳向外推。
Ditching emergency exit: opening instruc- tions. Ditching emergency exit handle: external side	AND	水上迫降应急出口 1、旋转。 2、平稳向内拉。
Door locking system: by-pass instructions. Main door and emer- gency exit: external side	FOR EMERGENCY ACCESS 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	应急通道 1、按住红色扭。 2、用把手打开门。
Door locking system: by-pass instructions. Main door and emer- gency exit: internal side	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE	应急出口 1、按住红色扭。 2、用把手打开门。

Page G9-7

Description/Place	Placard	Chinese
Main door: exit in- structions. Main door, internal side	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	警告 打开门,向飞机前方撤离前,确认螺旋桨 已经停止转动。
Emergency exit label. Emergency exit: inter- nal and external side	EMERGENCY EXIT	应急出口
Maximum steering angle. Front of the aircraft.	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	注意 牵引最大转弯角度:中立两侧20度。

INTENTIONALLY LEFT BLANK

NORMAL OPERATIONS

COLD WEATHER OPERATIONS

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20°C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15° C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

Preflight

Flight in expected and/or known icing conditions is forbidden.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 4. For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to takeoff because they will seriously affect airplane performance. Aircraft with ice/snow accumulation are forbidden to flight.

If the aircraft must be operated in cold weather conditions within the range -25° C to -5° C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (at temperature more then -5°C).
- Let airplane temperature stabilize.
- Heat the cabin at a suitable value for crew comfort: an electrical fan heater can be used inside the cabin.
- Tow airplane outside and perform engine starting.

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G10 - INCREASED MTOW (1230 KG)

RECORD OF REVISIONS

Rev	Revised page	ised Description of	Tecna	am Appro	EASA Approval Or Under DOA	
		Revision	DO	OoA	HDO	Privileges
0		New Edition	D. Ronca	C. Caruso	M. Oliva	-
1	SW5-16	Amend of Cruise performances table	D. Ronca	C. Caruso	M. Oliva	Approved under the au- thority of DOA, ref. EASA.21J.335 (MOD2006/290.170316)

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page G10-2

LOEP

	Page	Revision
Cover pages	G10-1 thru 2	Rev 1
	G10-3 thru 12	Rev 0
Section 2	SW2- 5	Rev 0
	SW2-6	Rev 0
	SW2-7	Rev 0
	SW2-8	Rev 0
	SW2-15	Rev 0
	SW2-16	Rev 0
	SW2-21	Rev 0
	SW2-22	Rev 0
Section 5	SW5-1	Rev 0
	SW5-2 thru 4	Rev 0
	SW5-5	Rev 0
	SW5-6	Rev 0
	SW5-7 thru 9	Rev 0
	SW5-10 thru 15	Rev 0
	SW5-16	Rev 1
	SW5-17 thru 22	Rev 0

INTRODUCTION

This Supplement applies to aircraft equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002).

It contains supplemental information to perform Increased Maximum Takeoff Weight (1230 kg) operations when the Tecnam Service Bulletin SB 077-CS or Design Change MOD 2006/015 has been embodied on the airplane.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Increased MTOW Design Change in subject.

It is the owner's responsibility to replace the mentioned pages in accordance with the instructions herein addressed section by section.

IMPORTANT

The owner has to apply the instructions reported on Supplement G1, then those herein reported.

SECTION 1 - GENERAL

See Section 1 of the Basic Manual

P2006T - Aircraft Flight Manual

SECTION 2 - LIMITATIONS

Make sure you first applied instructions reported on Supplement G1, Section 2 Limitations

Supplement G10 – LIMITATIONS page		Supplement G1 Section 2 page
SW2-5	REPLACES	Page 2-5 of Basic AFM, Section 2
SW2-6	REPLACES	Page 2-6 of Basic AFM, Section 2
SW2-7	REPLACES	Page S2-7 of Supplement G1, Section 2
SW2-8	REPLACES	Page S2-8 of Supplement G1, Section 2
SW2-15	REPLACES	Page 2-15 of Basic AFM, Section 2
SW2-16	REPLACES	Page 2-16 of Basic AFM, Section 2
SW2-21	REPLACES	Page S2-21 of Supplement G1, Section 2
SW2-22	REPLACES	Page S2-22 of Supplement G1, Section 2


Apply following pages replacement procedure:

INTENTIONALLY LEFT BLANK

2 SPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

SPEI	SPEED			KCAS	REMARKS
V _{NE}	Never exceed speed		171	172	Do not exceed this speed in any operation.
V _{NO}	Maximum Structu Speed	138	136	Do not exceed this speed except in smooth air, and only with caution.	
v _A	Design Manoeuvr	ing speed	122	119	Do not make full or abrupt control movement above
v _O	Operating Manoeuvring speed				this speed, because under certain conditions the air- craft may be overstressed by full control movement.
V _{LE}	Maximum Landing Gear ex- tended speed		93	93	Do not exceed this speed with the landing gear ex- tended.
V _{LO}	Maximum Landing Gear op- erating speed		93	93	Do not exceed this speed when operating the landing gear.
V _{FE}	Maximum flaps	-		93	Do not exceed this speed
	extended speed	Т.О.	122	119	for indicated flaps setting.
V _{MC}	Aircraft minimum speed with one en ative	62	62	Do not reduce speed below this value in event of one engine inoperative condi- tion.	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW2-6

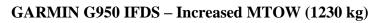
INTENTIONALLY LEFT BLANK

3 AIRSPEED INDICATOR MARKINGS

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White band	54-93	Lower limit is V_{SO} , upper limit is the maximum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green band	66-138	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	84	Best rate-of-climb speed with one engine in- operative at sea level.
Yellow band	138-171	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	171	Maximum speed for all operations.

INTENTIONALLY LEFT BLANK


14 WEIGHTS

Condition	Weight		
Maximum takeoff weight	1230 kg	2712 lb	
Maximum landing weight	1230 kg	2712 lb	
Maximum zero wing fuel weight	1195 kg	2635 lb	

NOTE

Refer to Para. 21.4 of this AFM Section for baggage loading limitations.

Section 2 – Limitations

INTENTIONALLY LEFT BLANK

GARMIN G950 IFDS – Increased MTOW (1230 kg) € TECNAM P2006T - Aircraft Flight Manual Page SW2-21

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, the following placards reporting the speed limitations are placed:

Operating Manoeuvring speed $V_0 = 122 \text{KIAS}$ Maximum L.G. op. speed $V_{LO} / V_{LE} = 93 KIAS$

Speed limitations placard for MTOW @1230 kg (2712 lb)

21.2. OPERATING LIMITATIONS

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

EMERGENCY PROCEDURES

Apply following instruction:

Section 3 - EMERGENCY PROCEDURES pages as per Supplement G1 Instructions are still valid

NOTE

Because of MTOW increase, the best rate-of-climb speed with one engine inoperative (V_{YSE}) is 84 KIAS. Refer to "Characteristic airspeeds with one engine inoperative" table reported on basic AFM Section 3.

4th Edition, Rev. 0

Section 9 – Supplements

NORMAL PROCEDURES

Apply following instruction:

Section 4 - NORMAL PROCEDURES pages as per Supplement G1 instructions are still valid

4th Edition, Rev. 0

Section 9 – Supplements

PERFORMANCES

Apply following instruction:

Supplement G10 – PERFORMANCES pages replace basic AFM Section 5 as a whole.

4th Edition, Rev. 0

Section 9 – Supplements

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 – Supplements

SECTION 5 - PERFORMANCES

INDEX

1.	Introduction	. 2
2.	Use of performances charts	. 2
3.	Airspeed indicator system calibration	. 3
4.	ICAO Standard Atmosphere	. 4
5.	Stall speed	. 5
6.	Crosswind	. 6
7.	Takeoff performances	. 7
8.	Take-off Rate of Climb at V_{y}	10
9.	Take-off Rate of Climb at V_x	11
10.	Enroute Rate of Climb at V _y	
	Enroute Rate of Climb at V_x	
12.	One-Engine Rate of Climb at V _{ySE}	14
	One-Engine Rate of Climb at V _{xse}	
	Cruise performances	
	Landing performances	
		22
		22

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 2

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

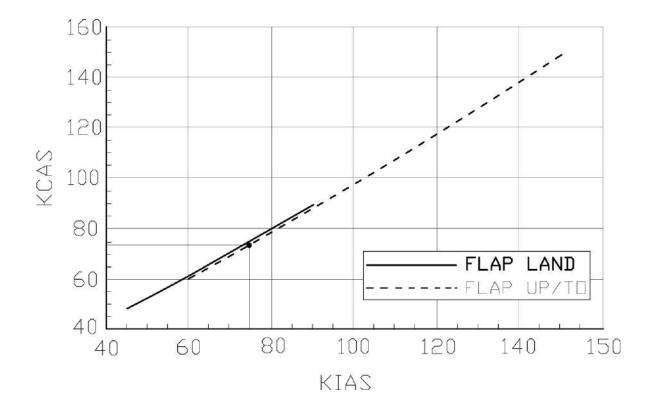
Data reported in graphs and/or in tables were determined using:

- "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

* airspeed * external temperature * altitude * weight * runway type and condition

2. Use of performances charts


Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

Additional information is provided for each table or graph.

4th Edition, Rev.0

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Graph shows calibrated airspeed V_{CAS} as a function of indicated airspeed V_{IAS} .

Example:

<u>Given</u>	
KIAS 75	

<u>Find</u> KCAS 74

GARMIN G950 IFDS - Increased MTOW (1230 kg) CONTRUCTION AERONAUTICHE P2006T - AITCREAST Flight Manual Page SW5 - 4

4. ICAO STANDARD ATMOSPHERE

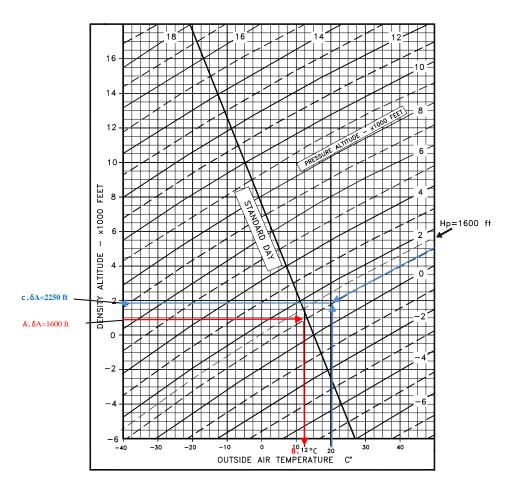
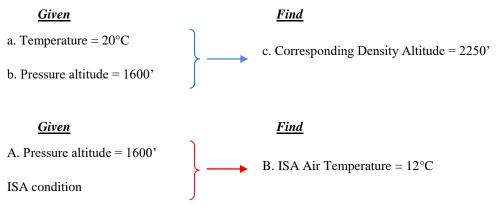



Figure 2 – ICAO chart

Examples:

4th Edition, Rev.0

Section 5 - Performances ICAO STANDARD ATMOSPHERE

COSTRUCTONA BERONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 5

5. STALL SPEED

Weight: 1230 kg (2712 lb) Throttle Levers: IDLE Landing Gear: Down CG: Most Forward (16.5%) No ground effect

WEIGHT	Bank			STALL	Speed		
	ANGLE	FLAPS 0°		FLAPS T/O		FLAPS FULL	
[kg]	[deg]	KIAS	AS KCAS KIAS KCAS		KIAS	KCAS	
	0	66	65	59	57	54	55
	15	67	66	58	58	55	56
1230 (FWD C.G.)	30	71	70	61	61	59	59
(FWD C.G.)	45	79	78	68	68	65	65
	60	95	93	83	81	79	78

NOTE

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 250 ft with banking below 30°.

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 6

6. CROSSWIND

Maximum demonstrated crosswind is 17 Kts

 \Rightarrow *Example*:

<u>Given</u>

<u>Find</u>

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 Kts

Crosswind = 10 Kts

Headwind = 17.5 Kts

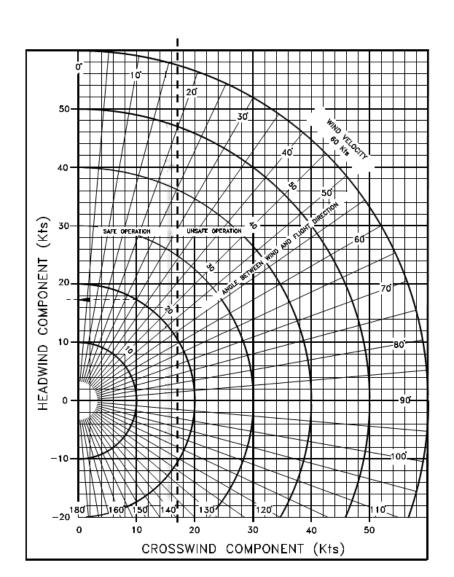


Figure 3 – Crosswind diagram

Section 5 - Performances crosswind

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 7

7. TAKEOFF PERFORMANCES

Weight = 1230 kg (2712 lb)

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt)
Tailwind: + 10m for each kt (33ft/kt)
Paved Runway: - 6% to Ground Roll
Runway slope: + 5% to Ground Roll for each +1%

Pressure		Distance [m]					
Altitude		Temperature [°C]					
[ft]		-25	0	25	50	ISA	
S.L.	Ground Roll	207	263	328	401	301	
	At 50 ft AGL	271	345	429	525	394	
1000	Ground Roll	231	294	366	447	330	
	At 50 ft AGL	303	385	479	586	432	
2000	Ground Roll	258	328	409	500	362	
	At 50 ft AGL	338	430	535	654	474	
3000	Ground Roll	289	367	457	559	398	
5000	At 50 ft AGL	378	480	598	731	521	
4000	Ground Roll	323	411	511	625	438	
	At 50 ft AGL	423	537	669	818	573	
5000	Ground Roll	362	460	572	700	481	
	At 50 ft AGL	473	602	749	916	630	
6000	Ground Roll	405	515	642	785	530	
	At 50 ft AGL	531	675	840	1027	694	
7000	Ground Roll	455	578	720	880	584	
	At 50 ft AGL	595	757	942	1152	765	
8000	Ground Roll	511	650	809	989	645	
	At 50 ft AGL	669	850	1059	1295	844	
9000	Ground Roll	575	730	909	1112	712	
	At 50 ft AGL	752	956	1190	1456	932	
10000	Ground Roll	647	822	1023	1252	786	
10000	At 50 ft AGL	847	1076	1340	1638	1029	

P2006T - Aircraft Flight Manual Page SW5 - 8

Weight =	1080 kg	<u>(2381 lb)</u>

Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS **Throttle Levers:** Full Forward **Runway:** Grass

Corrections

Headwind: - 2.5m for each kt (8 ft/kt) Tailwind: + 10m for each kt (33ft/kt) Paved Runway: - 6% to Ground Roll Runway slope: + 5% to Ground Roll for each +1%

Pressure		Distance [m]				
Altitude		Temperature [°C]				
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	148	188	234	286	215
	At 50 ft AGL	193	246	306	374	281
1000	Ground Roll	165	210	261	319	235
	At 50 ft AGL	216	274	341	418	308
2000	Ground Roll	184	234	291	356	258
	At 50 ft AGL	241	306	381	466	338
2000	Ground Roll	206	262	326	398	284
3000	At 50 ft AGL	269	342	426	521	372
4000	Ground Roll	230	293	364	446	312
4000	At 50 ft AGL	301	383	477	583	409
5000	Ground Roll	258	328	408	499	343
	At 50 ft AGL	338	429	534	653	449
6000	Ground Roll	289	368	457	559	378
	At 50 ft AGL	378	481	599	732	495
7000	Ground Roll	324	412	513	628	417
	At 50 ft AGL	425	540	672	822	545
8000	Ground Roll	364	463	577	705	460
	At 50 ft AGL	477	606	755	923	602
9000	Ground Roll	410	521	648	793	508
	At 50 ft AGL	536	682	849	1038	664
10000	Ground Roll	461	586	730	893	561
10000	At 50 ft AGL	604	767	955	1168	734

P2006T - Aircraft Flight Manual Page SW5 - 9

Weight = 930 kg (2051 lb)

Weight - 350 kg (2051 h)			Corrections												
Flaps: T/O Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS Throttle Levers: Full Forward Runway: Grass			Headwind:	- 2.5m for ea	ich kt (<i>8 ft/k</i> i	t)									
		Tailwind: + 10m for each kt (<i>33ft/kt</i>) Paved Runway: - 6% to Ground Roll Runway slope: + 5% to Ground Roll for each +1%													
								Pressure		Distance [m]					
								Altitude		Temperature [°C]				ISA	
[ft]		-25	0	25	50										
S.L.	Ground Roll	100	127	158	194	146									
	At 50 ft AGL	131	167	207	254	190									
1000	Ground Roll	112	142	177	216	160									
	At 50 ft AGL	146	186	231	283	209									
2000	Ground Roll	125	159	197	242	175									
	At 50 ft AGL	163	208	258	316	229									
3000	Ground Roll	140	177	221	270	192									
	At 50 ft AGL	183	232	289	353	252									
	Ground Roll	156	198	247	302	212									
4000	At 50 ft AGL	204	260	323	395	277									
5000	Ground Roll	175	222	277	338	233									
	At 50 ft AGL	229	291	362	443	305									
6000	Ground Roll	196	249	310	379	256									
	At 50 ft AGL	257	326	406	496	335									
7000	Ground Roll	220	280	348	426	282									
	At 50 ft AGL	288	366	455	557	370									
8000	Ground Roll	247	314	391	478	312									
	At 50 ft AGL	323	411	512	626	408									
9000	Ground Roll	278	353	440	538	344									
	At 50 ft AGL	364	462	575	704	450									
10000	Ground Roll	313	397	495	605	380									
10000	At 50 ft AGL	409	520	648	792	498									

4th Edition, Rev. 0

Section 5 - Performances TAKEOFF PERFORMANCES

P2006T - Aircraft Flight Manual Page SW5 - 10

8. Take-off Rate of Climb at $V_{\scriptscriptstyle Y}$

Flaps: Take-Off		luous Power						
Weight	Pressure	Climb Speed						
	Altitude	Vy		Tempera	ature [°C]		ISA	
[kg]	[ft]	[KIAS]	-25	0	25	50	10/1	
	S.L.	86	1276	1088	920	768	985	
	2000	83	1133	948	783	634	873	
	4000	79	990	809	646	500	761	
1230	6000	76	848	670	510	366	649	
1230	8000	73	707	531	374	233	537	
	10000	70	565	393	239	100	425	
	12000	67	425	256	104	-32	313	
	14000	64	285	118	-30	-164	201	
	S.L.	85	1507	1302	1119	954	1190	
	2000	82	1351	1150	970	808	1068	
	4000	79	1196	998	822	662	946	
1000	6000	76	1041	847	674	517	825	
1080	8000	73	887	696	526	372	703	
	10000	69	734	546	379	228	581	
	12000	66	581	397	232	84	459	
	14000	63	428	248	86	-59	338	
	S.L.	85	1803	1575	1372	1189	1451	
	2000	82	1630	1406	1206	1026	1315	
	4000	79	1457	1238	1041	864	1180	
020	6000	75	1286	1070	877	703	1045	
930	8000	72	1114	902	713	542	909	
	S.L. 85 1507 13 2000 82 1351 13 4000 79 1196 9 6000 76 1041 8 8000 73 887 6 10000 69 734 5 12000 66 581 3 14000 63 428 2 S.L. 85 1803 14 2000 82 1630 14 4000 79 1457 13 6000 75 1286 10 10000 69 944 7 10000 69 944 7 12000 65 774 5	735	549	382	774			
	12000	65	774	569	387	222	639	
	14000	62	604	404	224	63	503	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 11

9. Take-off Rate of Climb at V_x

Flaps: Take-Off Landing Gear: L		T	1					
Weight	Pressure	Climb Speed		Rate of Climb at V _x [ft/min] Temperature [°C]				
0	Altitude	V _x						
[kg]	[ft]	[KIAS]	-25	0	25	50	ISA	
	S.L.	78	1214	1037	880	738	941	
	1000	76	1147	972	816	675	888	
	2000	75	1080	906	751	612	836	
4000	3000	74	1013	841	687	549	783	
1230	4000	73	946	776	623	486	731	
	5000	72	879	710	560	424	678	
	6000	71	813	645	496	361	626	
	7000	70	746	580	432	299	574	
	S.L.	78	1283	1102	940	794	1002	
	1000	76	1214	1034	874	729	949	
	2000	75	1145	967	808	664	895	
	3000	74	1076	900	742	600	841	
1080	4000	73	1008	833	676	535	787	
	5000	72	939	766	611	471	733	
	6000	71	871	699	545	407	679	
	7000	70	803	632	480	342	625	
	S.L.	78	1435	1243	1072	918	1138	
	1000	76	1362	1172	1002	849	1081	
	2000	75	1289	1101	932	780	1024	
	3000	74	1216	1030	863	712	967	
930	4000	73	1144	958	793	644	910	
	5000	72	1071	888	724	576	853	
-	6000	71	999	817	654	508	796	
l l	7000	69	927	746	585	440	739	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 12

10. ENROUTE RATE OF CLIMB AT $V_{\rm Y}$

Power Setting Flaps: Up Landing Gear:	: Maximum Contin Up	iuous Power					
Weight	Pressure	Climb Speed		Rate o	of Climb [f	t/min]	
	Altitude	Vy		Tempera	ture [°C]		ISA
[kg]	[ft]	[KIAS]	-25	0	25	50	1071
	S.L.	84	1317	1135	973	827	1036
	2000	83	1179	1000	841	697	928
	4000	81	1041	865	709	568	819
1220	6000	80	904	731	577	439	711
1230	8000	78	767	598	446	310	603
	10000	77	631	464	316	182	495
	12000	75	495	332	186	54	387
	14000	73	360	199	56	-73	279
	S.L.	83	1560	1360	1182	1022	1251
	2000	82	1408	1212	1037	879	1132
	4000	80	1257	1064	892	737	1014
1000	6000	78	1106	917	748	595	895
1080	8000	76	956	770	604	454	776
	10000	74	807	624	461	314	658
	12000	72	657	478	318	173	539
	14000	70	509	333	175	34	420
	S.L.	82	1873	1649	1449	1269	1527
	2000	81	1703	1483	1286	1109	1393
	4000	79	1533	1317	1124	950	1260
020	6000	77	1364	1151	962	791	1127
930	8000	75	1196	987	800	632	994
	10000	73	1028	823	639	474	861
	12000	71	860	659	479	317	727
	14000	69	693	496	319	160	594

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 13

11. ENROUTE RATE OF CLIMB AT V_x

Power Setting Flaps: Up Landing Gear:	: Maximum Contin Up	uous Power						
Weight	Pressure	Climb Speed		Rate of Climb at V_x [ft/min]				
	Altitude	· v _x			ISA			
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	72	1241	1073	924	789	982	
	1000	72	1177	1011	863	729	932	
	2000	72	1114	949	802	669	882	
4330	3000	72	1050	887	741	609	832	
1230	4000	72	986	825	680	550	782	
	5000	72	923	763	619	490	732	
	6000	71	860	701	559	431	682	
	7000	71	797	639	498	371	632	
	S.L.	72	1480	1295	1130	981	1194	
	1000	72	1410	1226	1062	915	1139	
	2000	72	1340	1158	995	848	1084	
1000	3000	72	1269	1089	928	782	1029	
1080	4000	71	1199	1020	861	717	973	
	5000	71	1129	952	794	651	918	
	6000	71	1059	884	727	585	863	
	7000	71	990	815	660	520	808	
	S.L.	72	1787	1578	1391	1223	1463	
	1000	72	1707	1500	1315	1148	1401	
	2000	71	1628	1422	1239	1074	1339	
020	3000	71	1549	1345	1163	999	1277	
930	4000	71	1470	1268	1087	925	1215	
	5000	71	1391	1190	1012	851	1153	
	6000	71	1312	1113	936	777	1090	
	7000	70	1233	1036	861	703	1028	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 14

12. One-Engine Rate of Climb at V_{yse}

Power Setting	g: Maximum Conti propeller feathe		• •					
Landing Gear	:Up							
Weight	Pressure	Climb Speed		Rate of Climb [ft/min]				
weight	Altitude	VySE		ISA				
[kg]	[ft]	[KIAS]	-25	0	25	50		
	S.L.	84	330	230	142	62	176	
	1000	83	292	193	106	26	147	
	2000	82	254	157	69	-9	117	
1000	3000	81	216	120	33	-44	87	
1230	4000	80	179	83	-3	-80	58	
	5000	79	141	46	-38	-115	28	
	6000	79	104	10	-74	-150	-1	
	7000	78	67	-27	-110	-185	-31	
	S.L.	80	436	330	235	149	271	
	1000	80	396	290	196	111	240	
	2000	79	355	251	157	73	208	
1080	3000	79	315	211	118	35	176	
1080	4000	79	275	172	80	-3	145	
	5000	79	234	132	41	-41	113	
	6000	78	194	93	3	-78	81	
	7000	78	154	54	-35	-116	50	
	S.L.	79	574	455	349	253	390	
	1000	79	529	411	305	211	355	
	2000	79	483	367	262	168	319	
930	3000	78	438	322	219	126	284	
530	4000	78	393	278	176	83	248	
	5000	78	348	235	133	41	213	
	6000	78	304	191	90	-1	178	
	7000	77	259	147	47	-43	142	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 15

13. One-Engine Rate of Climb at V_{xse}

Power Setting Flaps: Up	: Maximum Conti propeller feathe		• •	• ·			
Landing Gear:	Up Pressure	Climb		Rate of Cl	imb at V _x	se [ft/min]]
Weight	Altitude	Speed V _{xSE}		Tempera	ature [°C]		ISA
[kg]	[ft]	[KIAS]	-25	0	25	25 50 140 61 104 26 69 -9 33 -44 -2 -78 -38 -113 -73 -148 108 -183 229 147 192 110 155 73 117 37 80 0 43 -36 6 -73 -31 -109 341 249 299 209	
	S.L.	83	325	227	140	61	174
	1000	82	288	191	104	26	145
	2000	81	251	155	69	-9	116
1000	3000	81	214	118	33	-44	86
1230	4000	80	177	82	-2	-78	57
	5000	79	140	46	-38	-113	28
	6000	78	103	10	-73	-148	-1
	7000	77	66	-26	-108	-183	-30
	S.L.	79	424	321	229	147	265
	1000	79	385	283	192	110	234
	2000	79	346	245	155	73	204
	3000	79	307	207	117	37	173
1080	4000	79	268	169	80	0	143
	5000	78	229	131	43	-36	112
	6000	78	190	93	6	-73	81
	7000	78	152	55	-31	-109	51
	S.L.	78	556	442	341	249	380
	1000	78	513	400	299	209	346
	2000	78	469	358	258	168	312
	3000	78	426	316	217	128	279
930	4000	78	383	274	176	87	245
	5000	78	340	232	134	47	211
	6000	77	298	190	93	7	177
	7000	77	255	148	52	-34	143

COSTRUZIONA AFROMAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 16

14. CRUISE PERFORMANCES

Weight	: 1150 kg	(2535 II	5)								
-	e Altitud	•	,								
		ISA -	- 30°C (-1	.5°C)	I	SA (15°C)	ISA	ISA + 30°C (45°C)		
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2250	29.5	103%	143	28.6	97%	145	27.1	92%	146	25.8	
2250	28	88%	134	24.5	83%	136	23.2	79%	138	22	
2250	26	69%	122	19.2	65%	124	18.2	62%	125	17.3	
2250	24	59%	115	16.6	56%	116	15.7	53%	117	14.9	
2250	22	46%	103	12.8	43%	103	12.1	41%	103	11.5	
2250	20	39%	96	11	37%	95	10.4	35%	94	9.9	
2100	28	84%	132	23.5	80%	134	22.2	76%	135	21.1	
2100	26	66%	121	18.5	63%	122	17.5	60%	123	16.7	
2100	24	57%	114	16	54%	114	15.1	52%	115	14.4	
2100	22	43%	100	12.1	41%	100	11.5	39%	100	10.9	
2100	20	37%	92	10.2	35%	91	9.7	33%	89	9.2	
1900	26	61%	117	17.1	58%	118	16.2	55%	119	15.4	
1900	24	53%	110	14.9	50%	111	14.1	48%	111	13.4	
1900	22	41%	97	11.4	39%	97	10.8	37%	96	10.2	
1900	20	35%	89	9.6	33%	88	9.1	31%	85	8.7	
	* Propeller RPM ** Fuel Consumption for each Engine										

COSTRUCTOR AFONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 17

Weight	: 1150 ka	g (2535 l	b)							
•	e Altitud	•••	•							
			- 30°C (-2	21°C)		ISA (9°C)		ISA	+ 30°C (3	9°C)
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [<i>lt/hr</i>]	PWR	TCAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	26.4	92%	141	25.7	87%	143	24.3	83%	144	23.1
2250	26.4	89%	139	25	85%	141	23.6	80%	143	22.4
2250	26	85%	137	23.9	81%	138	22.6	77%	140	21.5
2250	24	72%	128	20	68%	129	18.9	64%	130	18
2250	22	57%	116	16	54%	117	15.1	51%	118	14.3
2250	20	48%	108	13.4	45%	108	12.7	43%	108	12.1
2100	26.4	85%	137	23.9	81%	138	22.6	77%	140	21.4
2100	26	82%	134	22.8	77%	136	21.6	73%	137	20.5
2100	24	69%	125	19.2	65%	127	18.1	62%	128	17.2
2100	22	54%	114	15.2	51%	114	14.3	49%	115	13.6
2100	20	45%	104	12.6	43%	104	11.9	41%	104	11.3
1900	26.4	78%	132	21.9	74%	134	20.7	70%	135	19.6
1900	26	75%	130	20.9	71%	131	19.8	67%	132	18.8
1900	24	63%	121	17.7	60%	122	16.7	57%	123	15.9
1900	22	50%	110	14.1	48%	110	13.3	45%	110	12.6
1900	20	42%	101	11.7	40%	101	11.1	38%	100	10.6
* Pronell	ler RPM	-	-	<u>.</u>	<u> </u>	-	-	-	-	<u>.</u>

* Propeller RPM

** Fuel Consumption for each Engine

Weight: 1150 kg (2535 lb)	
Pressure Altitude: 6000 ft	

1163301												
		ISA -	– 30°C (-2	27°C)		ISA (3°C)		ISA ·	+ 30°C (3	3°C)		
RPM [*]	MAP	PWR	ктаѕ	F.C.**	PWR	КТАS	F.C.**	PWR	ктаѕ	F.C.**		
	[inHg]		NIA5	[lt/hr]		KIA5	[lt/hr]	1.0010	KIA5	[lt/hr]		
2388	23.6	83%	139	23.3	79%	141	22	75%	142	20.9		
2250	23.6	81%	138	22.6	76%	139	21.4	73%	141	20.3		
2250	22	68%	129	19.1	65%	130	18.1	61%	131	17.2		
2250	20	57%	119	15.8	54%	120	14.9	51%	120	14.2		
2250	18	46%	108	12.9	44%	108	12.2	41%	107	11.6		
2100	23.6	77%	135	21.6	73%	137	20.4	69%	138	19.4		
2100	22	65%	126	18.2	62%	127	17.2	59%	128	16.4		
2100	20	54%	116	15	51%	116	14.1	48%	117	13.4		
2100	18	44%	106	12.4	42%	106	11.7	40%	105	11.1		
1900	23.6	71%	130	19.8	67%	132	18.7	64%	133	17.8		
1900	22	60%	122	16.8	57%	123	15.8	54%	123	15		
1900	20	50%	112	13.9	47%	112	13.1	44%	112	12.4		
1900	18	41%	102	11.6	39%	102	10.9	37%	100	10.4		
* Propell	* Propeller RPM											
** Fuel Co	** Fuel Consumption for each Engine											

COSTRUZIONALITCHE P2006T - Aircraft Flight Manual Page SW5 - 18

•	: 1150 kg e Altitud		•								
Tressur		ISA – 30°C (-33°C)				ISA (-3°C)		ISA	ISA + 30°C (27°C)		
RPM [*]	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	
2388	21.1	75%	137	20.9	71%	139	19.7	67%	140	18.7	
2250	21.1	73%	136	20.3	69%	137	19.2	65%	138	18.2	
2250	20	65%	130	18.3	62%	131	17.2	58%	131	16.3	
2250	18	53%	118	14.9	50%	119	14	48%	118	13.3	
2100	21.1	69%	133	19.4	65%	134	18.3	62%	135	17.4	
2100	20	62%	127	17.4	59%	128	16.4	56%	128	15.6	
2100	18	51%	116	14.2	48%	116	13.4	46%	116	12.7	
1900	21.1	64%	128	17.8	60%	129	16.8	57%	130	15.9	
1900	20	57%	122	16	54%	123	15.1	51%	123	14.3	
1900	18	47%	112	13.2	44%	112	12.4	42%	111	11.8	
* Propel	ller RPM					-			-		

** Fuel Consumption for each Engine

Weight	Weight: 1150 kg (2535 lb)											
Pressur	Pressure Altitude: 12000 ft											
		ISA – 30°C (-39°C)				ISA (-9°C)		ISA	+ 30°C (2	1°C)		
RPM [*]	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]		
2388	18.8	67%	135	18.8	63%	136	17.7	60%	136	16.7		
2250	18.8	65%	133	18.2	61%	134	17.2	58%	134	16.3		
2250	18	60%	129	16.8	57%	129	15.9	54%	129	15		
2100	18.8	62%	130	17.4	59%	131	16.4	56%	132	15.5		
2100	18	58%	126	16.1	54%	126	15.2	51%	126	14.4		
1900	18.8	57%	125	15.9	54%	126	15	51%	126	14.2		
1900	18	53%	121	14.8	50%	121	13.9	47%	121	13.2		
* Propeller RPM ** Fuel Consumption for each Engine												

15. LANDING PERFORMANCES

Weight = 1230 kg (2712 lb)

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt)

Tailwind: + 11m for each kt (*36ft/kt*)

Paved Runway: - 2% to Ground Roll **Runway slope:** - 2.5% to Ground Roll for each +1%

Pressure		Distance [m]					
Altitude			Tempera	ture [°C]			
[ft]		-25	0	25	50	ISA	
6.1	Ground Roll	199	219	239	259	231	
S.L.	At 50 ft AGL	308	334	359	384	349	
1000	Ground Roll	206	227	248	269	238	
1000	At 50 ft AGL	318	344	370	396	358	
2000	Ground Roll	214	236	257	279	245	
2000	At 50 ft AGL	328	355	382	408	367	
3000	Ground Roll	222	244	267	289	252	
3000	At 50 ft AGL	348	377	406	434	385	
4000	Ground Roll	230	254	277	300	260	
	At 50 ft AGL	348	377	406	434	385	
5000	Ground Roll	239	263	287	311	268	
5000	At 50 ft AGL	359	389	419	448	395	
6000	Ground Roll	248	273	298	323	276	
0000	At 50 ft AGL	371	402	432	463	405	
7000	Ground Roll	258	284	310	336	285	
7000	At 50 ft AGL	382	415	446	478	416	
8000	Ground Roll	268	295	322	349	294	
0000	At 50 ft AGL	395	428	461	494	427	
9000	Ground Roll	278	306	334	362	303	
5000	At 50 ft AGL	408	442	476	510	438	
10000	Ground Roll	289	318	348	377	313	
10000	At 50 ft AGL	421	457	492	527	450	

COSTRUCTORIA P2006T - Aircraft Flight Manual Page SW5 - 20

Weight = 1080 kg (2381 lb)

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (*16 ft/kt*) Tailwind: + 11m for each kt (*36ft/kt*) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure		Distance [m]					
Altitude			Tempera	ture [°C]		ISA	
[ft]		-25	0	25	50	ISA	
51	Ground Roll	175	192	210	227	203	
S.L.	At 50 ft AGL	271	293	315	337	306	
1000	Ground Roll	181	199	218	236	209	
1000	At 50 ft AGL	279	302	325	348	314	
2000	Ground Roll	188	207	226	245	215	
2000	At 50 ft AGL	288	311	335	358	322	
3000	Ground Roll	195	215	234	254	222	
5000	At 50 ft AGL	306	331	356	381	338	
4000	Ground Roll	202	223	243	263	228	
4000	At 50 ft AGL	306	331	356	381	338	
5000	Ground Roll	210	231	252	273	235	
5000	At 50 ft AGL	315	342	368	394	347	
6000	Ground Roll	218	240	262	284	243	
0000	At 50 ft AGL	325	353	380	406	356	
7000	Ground Roll	226	249	272	295	250	
7000	At 50 ft AGL	336	364	392	420	365	
8000	Ground Roll	235	259	283	306	258	
0000	At 50 ft AGL	347	376	405	434	375	
9000	Ground Roll	244	269	294	318	266	
5000	At 50 ft AGL	358	388	418	448	385	
10000	Ground Roll	254	280	305	331	275	
10000	At 50 ft AGL	370	401	432	463	395	

4th Edition, Rev. 0

Section 5 - Performances LANDING PERFORMANCES

P2006T - Aircraft Flight Manual Page SW5 - 21

Weight = 930 kg (2051 lb)

Flaps: LAND Short Final Approach Speed = 70 KIAS Throttle Levers: Idle **Runway:** Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt) Tailwind: + 11m for each kt (36ft/kt) Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure		Distance [m]					
Altitude			Tempera	ture [°C]		ISA	
[ft]		-25	0	25	50	ISA	
51	Ground Roll	150	166	181	196	175	
S.L.	At 50 ft AGL	233	252	271	290	264	
1000	Ground Roll	156	172	187	203	180	
1000	At 50 ft AGL	240	260	280	299	270	
2000	Ground Roll	162	178	194	211	185	
2000	At 50 ft AGL	248	268	288	309	277	
3000	Ground Roll	168	185	202	219	191	
5000	At 50 ft AGL	263	285	307	328	291	
4000	Ground Roll	174	192	209	227	197	
	At 50 ft AGL	263	285	307	328	291	
5000	Ground Roll	181	199	217	235	203	
5000	At 50 ft AGL	272	294	317	339	299	
6000	Ground Roll	188	207	226	244	209	
0000	At 50 ft AGL	280	304	327	350	307	
7000	Ground Roll	195	215	234	254	215	
7000	At 50 ft AGL	289	313	338	361	315	
8000	Ground Roll	203	223	243	264	222	
0000	At 50 ft AGL	299	324	349	373	323	
9000	Ground Roll	210	232	253	274	229	
5000	At 50 ft AGL	308	334	360	386	331	
10000	Ground Roll	219	241	263	285	237	
10000	At 50 ft AGL	319	346	372	399	340	

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 22

16. BALKED LANDING CLIMB GRADIENT

Flight conditions (ISA and SL):

Weight:	1230 kg (2712 lb)
Throttle levers	Both FULL FORWARD
Flaps	Τ/Ο
Landing gear	DOWN
Weight	MTOW 1230kg (2712 lb)
Speed	72 KIAS
Climb gradient	9.4% (5.4°)

17. NOISE DATA

Noise level, determined in accordance with ICAO/Annex 16 4th Ed., July 2005, Vol. I°, Chapter 10, is **72.82** dB(A).

COSTRUCTONA ARONAUTICHE P2006T - Aircraft Flight Manual Page SW5 - 23

INTENTIONALLY LEFT BLANK

Supplement G10: page replacement instructions

WEIGHT AND BALANCE

See Section 6 of the Basic Manual

4th Edition, Rev. 0

Section 9 – Supplements Supplement no. G10 – Increased MTOW (1230 kg) Supplement G10: page replacement instructions

AIRFRAME and SYSTEMS DESCRIPTION

Apply following instruction:

Section 7 – AIRFRAME and SYSTEMS DESCRIPTION pages as per Supplement G1 instructions are still valid

4th Edition, Rev. 0

Section 9 – Supplements Supplement no. G10 – Increased MTOW (1230 kg)

SUPPLEMENT NO. G11 - VLO/VLE INCREASE

RECORD OF REVISIONS

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
N CV	page	Revision	DO	OoA	HDO	Privileges
0	all	Editorial change (*)	A. Sabino	C. Caruso	M. Oliva	DOA Approval

(*) This supplement was originally issued under EASA approval no. 10041602.

LOEP

Page	Revision
G11-1	Rev 0
G11-2	Rev 0
G11-3	Rev 0
G11-4	Rev 0
G11-5	Rev 0
G11-6	Rev 0

INTRODUCTION

This Supplement applies to aircraft equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and provides supplemental information to increase the Vlo/Vle when the Tecnam Service Bulletin SB 098-CS or Design Change MOD 2006/033 has been embodied on the airplane.

The information contained herein supersedes the basic Aircraft Flight Manual.

SECTION 2 - LIMITATIONS

EASA Approved

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G11 – Vlo/Vle Increase

SPEED LIMITATIONS

On the left side instrument panel, above on the left, it is placed the following placard reporting the speed limitations:

Maximum L.G. op. speed

 $V_{LO}/V_{LE} = 122 \text{ KIAS}$

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G11 – Vlo/Vle Increase

SUPPLEMENT NO. G12 - SOUTH AFRICAN AFM

(SACAA APPROVED)

Record of Revisions

Rev	Revised	evised Description of Tecnam Approval			EASA Approval Or Under DOA	
Rev	page	Revision	DO	OoA	HDO	Privileges
0	All	Editorial Change	A. Sabino	C. Caruso	M. Oliva	See Note (*)

Note (*): this Supplement has been originally issued on 2 May 2013, after EASA Third Country Validation process completion.

LOEP

Page	Revision	Page	Revision
G11-1	Rev 0	G11-5	Rev 0
G11-2	Rev 0	G11-6	Rev 0
G11-3	Rev 0	G11-7	Rev 0
G11-4	Rev 0	G11-8	Rev 0

TABLE OF CONTENTS

	4
LIMITATIONS	5
Maximum operating altitude	5
Inflight engine restart	5
GPS systems	6
GPS GNS 430 or GNS 530 operation (for airplanes with autopilot installed)	6
GPS GNS 430 or GNS 530 operation (for airplanes without autopilot installed)	6
WAAS and SBAS functionalities:	7

INTRODUCTION

This Supplement applies for South African registered aircraft

It contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is registered in South Africa.

For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable.

LIMITATIONS

MAXIMUM OPERATING ALTITUDE

Maximum operating altitude is 14000 ft (4260 m) MSL.

At altitudes between 10 000 feet (3048 m) and 12 000 feet (3658 m) for longer than 120 minutes intended flight time, or above 12 000 feet, the aircraft shall not be operated unless the aircrew is provided with the supplemental oxygen as prescribed in Document SA-CATS 91 and such oxygen may be used continuously whenever these circumstances prevail."

INFLIGHT ENGINE RESTART

The inflight engine restart procedure is reported on a placard (shown below) installed on the central console.

INFLIGHT ENGINE RESTART

1) Fuel Pump ON & normal engine starting

GPS SYSTEMS

GPS GNS 430 OR **GNS 530** OPERATION (FOR AIRPLANES WITH AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.

- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;

- Navigation using of the GPS system as the source of information is limited to IFR en route, terminal area and non-precision approach mode;

- During IFR in terminal area or non-precision approach using GPS, autopilot or flight director must be coupled to GPS.

- If RAIM function becomes unavailable in "en route" phase of flight, position must be verified every 15 minutes using other IFR approved navigation system;

- During IFR in terminal area or non-precision approach using GPS, in case RAIM function becomes unavailable, the GPS navigation must be discontinued;

- Before an IFR non-precision approach using GPS, the availability of the RAIM function must be checked to the time and place predicted (RAIM prediction). If predicted the unavailability of the RAIM function, navigation must be planned with others approved navigation systems;

- Before a non-precision approach using GPS, the database information must be compared with that in the approach chart, including transitions, position and altitude of waypoints;

- IFR non-precision approach using GPS must be based on the approved procedures of the equipment database. It cannot be done based on data manually included.

GPS GNS 430 OR **GNS 530** OPERATION (FOR AIRPLANES WITHOUT AUTOPILOT INSTALLED)

- Use of GPS for precision approach navigation mode is not allowed.

- Use of GPS is prohibited as primary means for navigation. GPS is approved as supplemental means for navigation;

- Use of GPS is prohibited for IFR in terminal area or in non-precision approach operations;

- If RAIM function becomes unavailable in en route phase of flight, position must be verified every 15 minutes using other IFR approved navigation system.

WAAS AND SBAS FUNCTIONALITIES

The WAAS and SBAS functionalities are not available in South Africa and these functions are not tested or approved in South African air space.

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G13 – ALTERNATORS WITH 70 A INSTALLATION

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Kev	page	Revision	DO	OoA	HDO	Privileges
0	all	Editorial change	A. Sabino	C. Caruso	M. Oliva	DOA Privileges.

List of Effective Pages

Page	Revision
G13-1	Rev 0
G13-2	Rev 0
G13-3	Rev 0
G13-4	Rev 0
G13-5	Rev 0
G13-6	Rev 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when 70A alternators are installed replacing the standard, 40A ones (Design Change MOD 2006/202).

The information contained herein supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per the Design Change in subject.

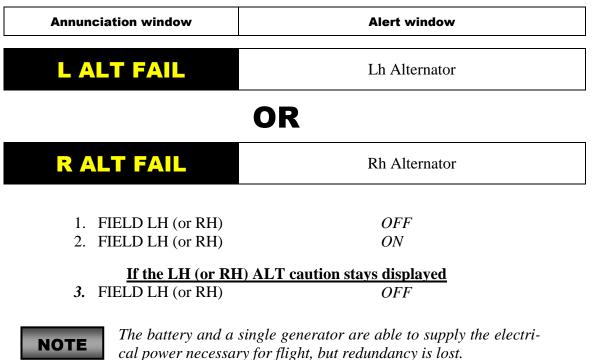
It is the owner's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

GENERAL

When 70A alternators are installed replacing the standard, 40A ones, the electrical system logic is not affected by any substantial change. Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 Vdc (through two external voltage regulators), 70 Amp and is provided with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator's failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.


SECTION 3 - EMERGENCY PROCEDURES

This section report some procedures which replace the same procedure in the basic AFM. The procedures affected from the replacement of existing 40A alternators with 70A are the following:

- Single alternator failure/overvoltage
- Both alternators failure
- Both alternators overvoltage

SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

4. Land as soon as practicable

BOTH ALTERNATORS FAILURE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
R ALT FAIL	Rh Alternator

In event of both L and R ALT FAIL caution alerts displayed:

- 1. FIELD LH and RH
- 2. FIELD LH and RH

BOTH OFF BOTH ON (one at a time)

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

3.	FIELD LH and RH	BOTH OFF
4.	CROSS BUS LH and RH	BOTH OFF

If engine starting battery modification is applied

5. EMERG BATT switch

ON

6. Land as soon as possible.

If engine starting battery modification is not applied

5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

NOTE

The battery will supply electrical power for at least 30 minutes.

BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window	
L BUS VOLT HIGH	Lh overvoltage	
R BUS VOLT HIGH	Rh overvoltage	

In event of both L and R BUS VOLT HIGH warning alerts displayed:

- 1. FIELD LH and RH
- 2. FIELD LH and RH

BOTH OFF

BOTH ON (one at a time)

BOTH ON (one at a time)

BOTH OFF

BOTH OFF

If the LH (or RH) BUS VOLT HIGH caution stays displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning stay displayed

- 3. CROSS BUS LH and RH
- 4. FIELD LH and RH
- 5. FIELD LH and RH

If LH (or RH) BUS VOLT HIGH warning stays displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning stay displayed **BOTH OFF**

- 7. FIELD LH and RH
- If engine starting battery modification is applied 7. EMERG BATT switch ON
- 8. Land as soon as possible.

If engine starting battery modification is not applied 8. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Pitot Heat	DME	ADF	NAV Lights
Landing Light	Transponder	COM 2	Rudder Trim
Taxi Light	A/P	NAV 2	Stall Warning
	A/P Pitch Trim	MFD	
		AHRS/ADC	

The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 0

Section 9 - Supplements

Supplement no. G13 – Alternators with 70A installation

SUPPLEMENT NO. G14

SMP FOR GARMIN G950 AVIONICS

RECORD OF REVISIONS

Rev	Revised	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA	
Nev	page		DO	OoA	HDO	Privileges	
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval	
1	S4-26	Integration of information formerly contained in Sup- plement G18.	A. Sabino	C. Caruso	M. Oliva	DOA Approval	
	G14-1,2	Title changed.	A. Sabino				Approved under the authority of DOA
2	SMP4-27	Procedure amended.		C. Caruso	M. Oliva	ref. EASA.21J.335 (MOD2006/345.181120)	

LOEP

	Pages	Revision
Cover pages	G14 – 3 thru 22	<i>Rev.</i> 0
	G14 – 1, 2	<i>Rev.</i> 2
Section 2	SMP2 – 3	<i>Rev.</i> 0
Section 3	SSMP3 – 3 thru 5	<i>Rev.</i> 0
	SSMP3 – 7 thru 9	<i>Rev.</i> 0
	SSMP3 – 21	<i>Rev.</i> 0
	SSMP3 – 29	<i>Rev.</i> 0
	SSMP3 – 36 thru 40	<i>Rev.</i> 0
	SSMP3 – 49 thru 53	<i>Rev.</i> 0
Section 4	SSMP4 – 26	Rev. 1
	SSMP4 – 27	<i>Rev.</i> 2
Section 7	SSMP7 – 41	<i>Rev.</i> 0
	SSMP7 – 44 thru 48	<i>Rev.</i> 0

Ed.4, Rev.2

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and with Special Mission Platform. The Special Mission Platform refers to the following design changes:

- MOD2006/046 Power supply from built-in generators
- MOD2006/202 Replacement of existing 40A alternators with 70A
- MOD2006/204 Installation of converter box

For the two first design changes the supplements (n° A15 and G13) are already approved by EASA and in this supplement we report the same information for reference.

The Rotax engine built-in generators, one for each engine, feed two bus bars made available for end user equipment, when the design change 2006/046 is installed.

When 70A alternators are installed replacing the standard, 40A ones, the electrical system logic is not affected by any substantial change. Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 Vdc (through two external, first fuselage frame installed voltage regulators), 70 Amp and is provided with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator's failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Design Changes in subject.

NOTE

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Ed.4, Rev.0

Supplement G14: pages replacement instructions

SECTION 1 - GENERAL

Apply following instruction:

See Basic AFM - Section 1

Ed.4, Rev.0

Ed.4, Rev.0

Supplement G14: pages replacement instructions

SECTION 2 - LIMITATIONS

Apply following pages replacement procedure:

Supplement G14 - LIMITATIONS page		Basic AFM Section 2 page
SMP2 – 3	REPLACES	Page 2 – 3 of Basic AFM, Section 2

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION **CONTRUCTION ARTICLE** CONTRUCTION ARTICLE CONTRUCTION ARTICLE CONTRUCTION ARTICLE CONTRUCTION C

1. INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of *P2006T* aircraft, its engines and standard systems and equipment.

LH and RH AUX FIELDS, enabling the converter box operations for Special Mission purposes, should be kept OFF during take-off, climb, landing and any abnormal procedure that affects electrical generating system (including single engine operation):

During Take-off, Climb, Landing and Single Engine Operations:

LH and RH AUX FIELD switches

BOTH OFF

This limitation only applies when both 70Amp alternators and converter box are installed.

Safety provisions, as following described, automatically disengage the LH and RH AUX FIELDS in case of one main field malfunction (i.e. for OEI). Also, if only one AUX FIELD switch is ON, the converter box is not powered.

Section 9 - Supplements

Supplement G14: pages replacement instructions

SECTION 3 – EMERGENCY PROCEDURES

Supplement G14 - EMERGENCY PROCEDURES page		Supplement G1 Section 3 page
SSMP3 – 3 thru 5	REPLACE	Page S3 – 3 thru 5 of Supplement G1, Section 3
SSMP3 – 7 thru 9	REPLACE	Page S3 – 8 thru 11 of Supplement G1, Section 3
SSMP3 – 21	REPLACES	Page S3 – 21 of Supplement G1, Section 3
SSMP3 – 29	REPLACES	Page S3 – 29 of Supplement G1, Section 3
SSMP3 – 36 thru 40	REPLACE	Page S3 – 36 thru 40 of Supplement G1, Section 3
SSMP3 – 49 thru 53	REPLACE	Page S3 – 49 thru 53 of Supplement G1, Section 3

Apply following pages replacement procedure:

Section 9 - Supplements

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONIA AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-3

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

The procedures affected from installation of the Special Mission Platform are the following:

- Single alternator failure / overvoltage
- Both alternators failure
- Both alternators overvoltage
- Engine securing
- Total electrical failure
- Inflight engine restart
- Engine failure during takeoff run
- Engine failure during climb
- Engine failure in flight
- Engine fire on the ground
- Engine fire during takeoff run
- Engine fire in flight
- Electrical smoke in cabin on the ground
- Electrical smoke in cabin during flight

The main difference regarding aircraft systems, compared with the basic AFM, is the presence of the Power supply from built-in generators, Alternators with 70A and Converter Box. The powering and disconnection of converter box is very simple and, in most of abnormal cases, is automatically managed by relays and safety provisions.

The converter box (following described in Section 7) is managed by the pilot only via two switches, located in the bottom LH side of pilot seat on a single panel provided by: two switches, two breakers and two indicating lamps.

Only when pilot selects BOTH switches ON (right and left AUX) and both alternators are operative the system allows a surplus of power generated by the engines and alternators to flow into 4x converters and, then, into mission equipment, when installed.

The health status of converters inside the box (located into the baggage compartment) is monitored by mission operator, via 4x failure indicating lamps. Following the key concepts when managing converter boxes:

- 1. Mission Power Switches: they enable the converter box ONLY when BOTH are set to ON;
- 2. Converter box power: enabled only if both LH and RH main alternators are generating power;
- 3. Converter box: automatically switches OFF in case LH or RH main alternators is faulty / not generating;
- 4. Converter box: automatically switches OFF in case LH or RH mission switch is set to OFF;

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION COSTRUZION AEROMAUTICHE P2006T - AITCRAFT FIIght Manual Page SSMP3-4

5. Failure lamp: when illuminated, indicates that the correspondent converter is not working properly and needs to be replaced if the maximum available power from converter box is needed. When all converters are working properly, the system is capable to output 40A@28V. If one converter fails, 12A@28V are lost. For this reason, the end-user mission can continue if the equipment demand is less than 25/28A. On the contrary, the converter needs to be replaced.

Before operating the aircraft, the pilot/operator should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF			
1.	Throttle Lever	BOTH IDLE	
2.	Rudder	Keep heading control	
3.			
4.			
b. "o	ther procedures" which should be w	ell theoretically known and mastered,	

. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

Section 3 – Emergency procedures INTRODUCTION

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-5

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

 Keep self-control and maintain aircraft flight attitude and parameters
 Analyse the situation identifying, if required, the area for a possible emergency landing

3. Apply the pertinent procedure

4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
OR	
R ALT FAIL	Rh Alternator
1. FIELD LH (or RH)	OFF
2. LH and RH AUX FIELD switch	BOTH OFF
3. FIELD LH (or RH)	ON
If the LH (or RH) ALT caution	
1. FIELD LH (or RH)	OFF

- 1. CROSS BUS LH (or RH)
- 2. Land as soon as practical.

NOTE

The battery and a single generator are able to supply the electrical power necessary for the entire mission, but redundancy is lost.

OFF

2.2 BOTH ALTERNATORS FAILURE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
R ALT FAIL	Rh Alternator
	in i inclinator

In event of both L and R ALT FAIL caution alerts displayed:

1.	FIELD LH and RH	BOTH OFF
2.	LH and RH AUX FIELD switch	BOTH OFF
3.	FIELD LH and RH	BOTH ON

If both LH and RH ALT cautions stay displayed

	If engine starting battery n	nodification is annlied
2.	CROSS BUS LH and RH	BOTH OFF
1.	FIELD LH and RH	BOTH OFF

If engine starting battery modification is applied

ON

- 1. EMERG BATT switch
- 2. Land as soon as possible.

If engine starting battery modification is not applied

1. Land as soon as possible.

NOTE

The battery can supply electrical power for at least 30 minutes.

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

1. FIELD LH and RH	BOTH OFF
2. LH and RH AUX FIELD switch	BOTH OFF
3. FIELD LH and RH	BOTH ON (one at a time)

if LH (or RH) OVERVOLT warning stays displayed

1. FIELD LH (or RH)	OFF
---------------------	-----

if both LH and RH OVERVOLT warning stay displayed

1. CROSS BUS LH and RH	BOTH OFF	
2. FIELD LH and RH	BOTH OFF	
3. FIELD LH and RH	BOTH ON (one at a time)	
If LH (or RH) OVERVOLT w	arningt stays displayed	
1. FIELD LH (or RH)	OFF	
2. CROSS BUS LH (or RH)	ON	
If both LH and RH OVERVOLT warning stay displayed		
1. FIELD LH and RH	BOTH OFF	
2. CROSS BUS LH and RH	BOTH OFF	
If engine starting battery modification is applied		
1. EMERG BATT switch	ON	
2. Land as soon as possible.		
If engine starting battery modification is not applied		
1 Land as soon as nossible		

1. Land as soon as possible.

NOTE 7

The battery can supply electrical power for at least 30 minutes.

P2006T - Aircraft Flight Manual

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

1. Throttle Lever	IDLE
2. Ignition	BOTH OFF
3. Propeller Lever	FEATHER
4. Fuel Selector	OFF
5. Electrical fuel pump	OFF
6. LH and RH AUX FIELD switch	BOTH OFF

If necessary, this procedure is applicable to both engines. When both engines are secured, both CROSS BUS switches must be set to OFF.

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15° .

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON
2.	Standby attitude indicator switch	ON
3.	MASTER SWITCH	OFF
4.	FIELD LH and RH	BOTH OFF
5.	LH and RH AUX FIELD switch	BOTH OFF
6.	MASTER SWITCH	ON
7.	FIELD LH and RH	BOTH ON

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. **Land as soon as possible** applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION

ECNAM P2006T - Aircraft Flight Manual

6.2 INFLIGHT ENGINE RESTART

After:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

- 1. Carburettor heat
- 2. Electrical fuel pump
- 3. Fuel quantity indicator
- 4. Fuel Selector
- 5. FIELD
- 6. LH and RH AUX FIELD switch
- 7. Ignition
- 8. Operating engine Throttle Lever
- 9. Stopped engine Throttle Lever
- 10. Stopped engine Propeller Lever
- 11. Start push-button
- 12. Propeller Lever
- 13. FIELD
- 14. Engine throttle levers

15. EMERG BATT switch

ON if required ON CHECK CHECK (Crossfeed if required) OFF BOTH OFF BOTH ON SET as practical IDLE FULL FORWARD PUSH SET at desired rpm ON (check for positive ammeter) SET as required

Page SSMP3-36

If engine restart is unsuccessful

ON (if starting battery installed)

16. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

17. Affected engine

SECURE (see engine securing procedure Para. 3)

18. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

6.3 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF			
1.	Throttle Lever	BOTH IDLE	
2.	Rudder	Keep heading control	
3.	Brakes	As required	

When safely stopped:

- 4. Failed Engine Ignition
- 5. Failed Engine Field

6. LH and RH AUX FIELD switch

7. Failed Engine Electrical fuel pump

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

BOTH OFF

BOTH OFF

OFF

OFF

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

*V*_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. Operating engine Throttle Lever
- 2. Operating engine Propeller Lever
- 3. Heading
- 4. Attitude
- 5. <u>Inoperative engine</u> Propeller Lever
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps
- 9. LH and RH AUX FIELD switch

FULL POWER

FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0° BOTH OFF

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-39

1. Autopilot	OFF
2. Heading	Keep control using rudder and ailerons
3. Attitude	Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- 5. Operating engine Propeller Lever
- 6. Operative engine Electrical fuel pump
- 7. LH and RH AUX FIELD switch
- 8. Inoperative engine Propeller Lever
- 9. <u>Inoperative engine</u>

FULL THROTTLE FULL FORWARD Check ON BOTH OFF FEATHER Confirm and SECURE

If engine restart is possible:

10. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

If engine restart is unsuccessful or it is not recommended:

- 11. Land as soon as possible
- 12. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

Ed.4, Rev.0

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-40

OFF

6.5 ENGINE FAILURE IN FLIGHT

- 1. Autopilot
- 2. Heading
- 3. Attitude
- Adjust as appropriate to keep airspeed over 62 KIAS

Keep control using rudder and ailerons

- 4. LH and RH AUX FIELD switch
- 5. Operating engine
- 6. Operative engine Electrical fuel pump
- 7. Operating engine Fuel Selector

BOTH OFF Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

8. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 9. Land as soon as possible
- **10.** One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative. GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION COSTRUZIONIA AROMAUTICHE P2006T - AITCRAft FIIght Manual Page SSMP3-49

8 SMOKE AND FIRE OCCURRENCE

	8.1 ENGINE FIRE ON THE GROUND	
1.	Fuel Selectors	BOTH OFF
2.	Ignitions	ALL OFF
3.	LH and RH AUX FIELD switch	BOTH OFF
4.	Electrical fuel pumps	BOTH OFF
5.	Cabin heat and defrost	OFF
6.	MASTER SWITCH	OFF
7.	Parking Brake	ENGAGED
8.	Aircraft Evacuation	carry out immediately
	Consider use of ditching emerged	
	or passenger doors are blocked	l, watch for engine hot parts,

fuel, hydraulic fluid or oil spills. Leave aircraft in upwind di-

rection.

WARNING

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION **EXTECNAM** P2006T - Aircraft Flight Manual Page SSMP3-50

	8.2 ENGINE FIRE DURING TAKE	OFF RUN		
	BEFORE ROTATION: ABORT TAKE OFF			
1.	Throttle Lever	BOTH IDLE		
2.	Rudder	Keep heading control		
3.	Brakes	As required		
	With aircraft under control			
4.	Fuel Selector	BOTH OFF		
5.	Ignitions	ALL OFF		
6.	LH and RH AUX FIELD switch	BOTH OFF		
7.	Electrical fuel pump	BOTH OFF		
8.	Cabin heat and defrost	OFF		
9.	MASTER SWITCH	OFF		
10.	Parking Brake	ENGAGED		
11.	Aircraft Evacuation	carry out immediately		

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

*V*_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

1.	Operating engine Throttle Lever	FULL POWER
2.	Operating engine Propeller Lever	FULL FORWARD
3.	Heading	Keep control using rudder and ailerons
4.	Attitude	Reduce as appropriate to keep airspeed over 62 KIAS
5.	<u>Fire affected engine</u> Propeller Lever	FEATHER
6.	Landing gear control lever	UP
7.	Airspeed	V _{XSE} /V _{YSE} as required
8.	Flaps	0•
	-	

SMOKE AND FIRE OCCURRENCE

COSTRUZIONARERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-51

At safe altitude

- 9. LH and RH AUX FIELD switch
- 10. Cabin heat and defrost
- 11. Fire affected engine Fuel Selector
- 12. Fire affected engine Ignitions
- Fire affected engine Electrical fuel pump 13.
- 14. Fire affected engine FIELD

BOTH OFF BOTH OFF Confirm and OFF Confirm and BOTH OFF Confirm and OFF

15. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

OFF

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

BOTH OFF

BOTH OFF

over 62 KIAS

Confirm and OFF

Confirm and BOTH OFF

Confirm and FEATHER

Confirm and FULL FORWARD

Keep control using rudder and ailerons

Adjust as appropriate to keep airspeed

OFF

OFF

OFF

OPEN

COSTRUZINA AEROMAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-52

8.3 ENGINE FIRE IN FLIGHT

- Cabin heat and defrost 1.
- 2. LH and RH AUX FIELD switch
- 3. Autopilot
- **<u>Fire affected engine</u>** Fuel Selector 4.
- 5. Fire affected engine Ignition
- **Fire affected engine** Throttle Lever 6.
- 7. **Fire affected engine** Propeller Lever
- 8. **<u>Fire affected engine</u>** Electrical fuel pump
- Heading 9.
- 10. Attitude
- 11. Fire affected engine Field
- 12. Cabin ventilation
- **13.** Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

	8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND		
1.	MASTER SWITCH	OFF	
2.	Cabin heat and defrost	OFF	
3.	LH and RH AUX FIELD switch	BOTH OFF	

- 3. LH and RH AUX FIELD switch 4. Throttle Lever
- 5. Ignitions
- 6. Fuel Selector
- 7. Parking Brake
- 8. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

Ed.4. Rev.0

COSTRUZIONARROMAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-53

1	Cabin ventilation	OPEN
1. ว		ON EN
2.	Emergency light	
3.	Standby attitude indicator switch	ON
4.	Gain VMC conditions as soon as possible	

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

- 6. FIELD LH and RH
- 7. LH and RH AUX FIELD switch
- 8. AVIONICS LH and RH
- 9. CROSS BUS LH and RH

A fully charged battery can supply electrical power for at least 30 minutes.

OFF

OFF

BOTH OFF

BOTH OFF

If faulty source is found:

10. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

WARNING

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

11. MASTER SWITCH

12. Land as soon as possible

OFF

Section 3 – Emergency procedures SMOKE AND FIRE OCCURRENCE

Ed.4, Rev.0

Section 9 - Supplements

Supplement G14: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G14 - NORMAL PROCEDURES page		Supplement S1 Section 4 page	
SSMP4 – 26 thru 27	REPLACE	Page S4 – 26 thru 27 of Supplement G1, Section 4	

Section 9 - Supplements

Ed.4, Rev.0

Section 9 - Supplements

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP4-26

3.10 CRUISE

1 LH and RH Propeller Lever

SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

2 Engine parameters check (LH and RH)

• Oil temperature:	90° - 110 ° C
	(or 50° - 130° C, if MOD2006/002 is applied)
• CHT / CT:	50° - 135° / 50° - 120 °C
• Oil pressure:	2 - 5 bar.

• Fuel pressure: 2.2 - 5.8 psi

*2.2 – 7.26 psi (0.15 – 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

3 Carburettor heat as needed (see also instructions addressed on Section 3

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed

check as necessary

NOTE

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.10.1 CONVERTER BOX TURN ON

- 1 LH and RH AUX FIELD
- 2 Converter Box
- 3 Mission systems

ON Check enabled (no fail lamps) Use as required

3.10.2 CONVERTER BOX TURN OFF

- 1 Mission systems
- 2 LH and RH AUX FIELD
- 3 Green lamps on switch panel

Shut down as necessary OFF Check OFF

Ed.4, Rev.1

Section 9 - Supplements

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual

3.11 TURBULENT AIR OPERATION

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

3.12 DESCENT AND APPROACH

1	Propellers	As required
NOTE	In order to control engine cooling and life, it is preferable to descend with power above idle and RPM lower than full continuous.	
2	Carburettors heat	As required
3	Altimeter setting	QNH set and crosscheck
4	Rear passengers seats	Set at full aft position

3.13 BEFORE LANDING

1 2 3	Rear passengers sea LH and RH Electric On downwind leg:		Seats set at full aft and lower position BOTH ON		
	MTOW 1180kg	MTOW 1230 kg	Flaps T/O		
	$V_{FE} = 119KIAS$	$V_{FE}=122KIAS$			
4	Speed below applicable VLO/VLE		Landing gear control knob - DOWN – Check green lights ON		
5	Carburettors heat		CHECK OFF		
6	LH and RH Propeller Lever		FULL FORWARD		
7	01	On final leg: speed below 93 KIAS		Flaps FULL	
8	Final Approach Speed		MTOW 1180kg	MTOW 1230 kg	
			$V_{APP} = 70KIAS$	$V_{APP}=71KIAS$	
9 10	Landing and taxi lig Touchdown speed	ht	ON 65 KIAS		

Supplement G14: pages replacement instructions

SECTION 5 - PERFORMANCE

Apply following instruction:

See Basic AFM - Section 5

NOTE

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation, including the supplement of Section 5, should the equipment affect it (i.e. protruding cameras).

Ed.4, Rev.0

Section 9 - Supplements

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

See Basic AFM - Section 6

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Supplement no. G14 – SMP FOR DIGITAL CONFIGURATION

SECTION 7 - AIRFRAME AND SYSTEMS DESCRIPTION

Supplement G14 - AIRFRAME AND SYSTEMS DESCRIPTION page		Supplement S1 Section 7 page
SSMP7 – 41	REPLACES	Page S7 – 41 of Supplement G1, Section 7
SSMP7 – 44 thru 48	REPLACE	Page S7 – 44 thru 46 of Supplement G1, Section 7

Apply following pages replacement procedure:

Supplement no. G14 - SMP FOR DIGITAL CONFIGURATION

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Supplement no. G14 – SMP FOR DIGITAL CONFIGURATION

COSTRUZION AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP7-41

18. ELECTRICAL SYSTEMS

Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 VDC, 70 Amp, and it is fitted with an external voltage regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator failures.

The power rating of the each alternator is such that if one alternator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 23-Ah in 1h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right alternator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Alternator bus
- RH Alternator bus
- LH Avionic bus
- RH Avionic bus

The distribution system operates as a single bus with power being supplied by the battery and both alternator but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions are connected to separate busses.

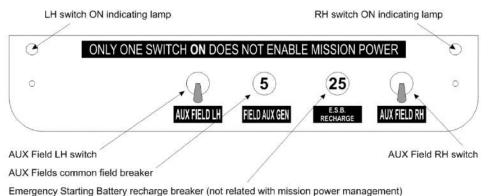
The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both alternator. This allows the bus for remaining active also in case of two independent faults in the supply paths.

The second ones allow, through a relay, for cutting off the power supply to the pertinent avionic bus.

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.


18.1 MISSION POWER CONTROL

When the airplane embodies the design change "Power supply from built-in generators", the Rotax engine built-in generators are enabled in order to supply power to two available bus bars.

Each built-in generator is activated by means of a switch (LH and RH AUX FIELD) located on the LH breakers rack where are located also the breakers related to the auxiliary power generation system.

The light (switch built-in light) indicates that the electrical power is being generated.

The below figure presents the control panel for the built-in generators which in turn activate the converter box:

Switches panels

Next paragraph describes the converter and connector box installed in the P2006T baggage compartment floor. This box allows the operator to have a source of 28Volt/40Amp electrical power for different mission equipment.

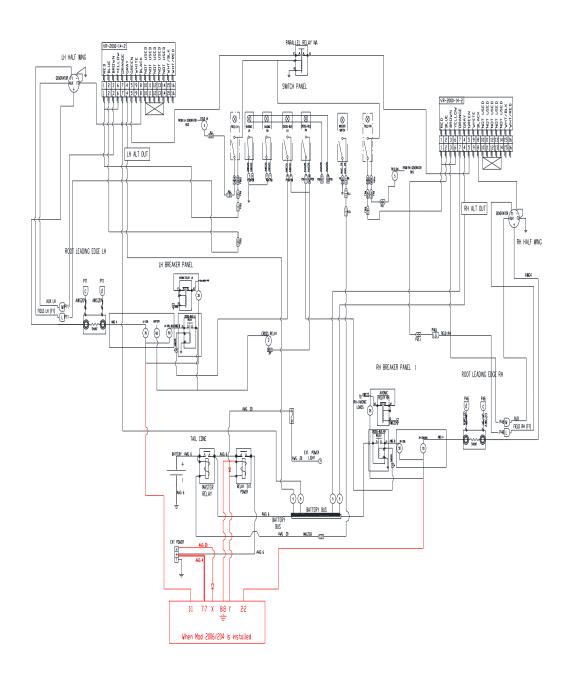
GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP7-45

18.1.1 CONVERTER BOX

The following points illustrate how the converter box works:

- 1. A closed, light alloy made box incorporates 4x converters Ameri-King AK-550-12, each one capable of 12Amp/28VDC output using a 14VDC input;
- 2. Each converter is fed by one different power generation:
 - 20Amp coming directly from the LH aux generator bus;
 - 20Amp coming directly from the RH aux generator bus;
 - 30Amp coming from the LH external alternator bus;
 - 30Amp coming from the RH external alternator bus;
- 3. Each converter is protected with circuit breakers on the INPUT and OUT-PUT sides;
- 4. The 30Amp current coming from the LH and RH external alternators is the amount of power surplus available due to the 2006/202 design change;
- 5. The same switches shown in the MOD2006/046 and reported in the figure above enable the relays that feed the converters;
- 6. Four relays enable the external power to feed also the converter box for ground test purposes, when external socket is connected;
- 7. A connector box allows the end user to have a maximum current of 40Amp at 28VDC available (1120W).



When using the ground power unit to test on-ground the mission equipment, remember that:

- 14VDC GPU only can be used, as done on standard P2006T.
- the minimum GPU capacity to properly feed mission equipment should be at least 150Amp @14VDC
- The FIELD AUX switches needs to be "ON" to test converter box connected equipment, "OFF" to test the aircraft avionics

NOTE

When connecting mission equipment to the system please note tha the amount of current provided depends on engine rpm setting. The maximum electrical power is available from 1.900rpm on. In the following figures the new Electrical system schematic is reported.

Electrical system schematic (Page 1)

Section 7 – Airframe and Systems description ELECTRICAL SYSTEM

Ed.4, Rev.0

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

P2006T - Aircraft Flight Manual

COSTRUZIONI AERONAUTICHE

Page SSMP7-47

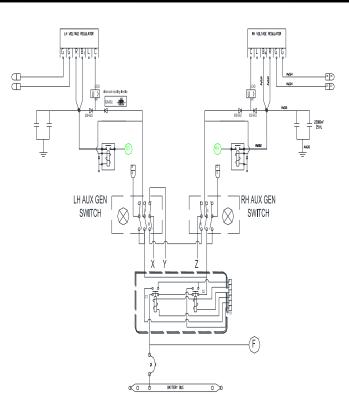


Figure 25 – Electrical system schematic (Page 2)

Electrical system schematic (Page 3)

Section 7 – Airframe and Systems description

Ed.4, Rev.0

P2006T - Aircraft Flight Manual

Page SSMP7-48

INTENTIONALLY LEFT BLANK

SECTION 8 – GROUND HANDLING & SERVICE

Apply following instruction:

See Basic AFM - Section 8

Ed.4, Rev.0

Section 9 - Supplements

Supplement no. G14 - SMP FOR DIGITAL CONFIGURATION

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Supplement no. G14 – SMP FOR DIGITAL CONFIGURATION

SUPPLEMENT NO. G15 JAPANESE AFMS

Record of Revisions

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Nev	page	Revision	DO	OoA	HDO	Privileges
0		First issue	D. Ronca	C. Caruso	M. Oliva	See Note (*)

Note (*): this Supplement has been originally issued after EASA Third Country Validation process.

LOEP

Page	Revision	Page	Revision
G15-1	Rev 0		
G15-2	Rev 0		
G15-3	Rev 0		
G15-4	Rev 0		
G15-5	Rev 0		
G15-6	Rev 0		
G15-7	Rev 0		
G15-8	Rev 0		

TABLE OF CONTENTS

INT	RODUCTION	4
1.	LIMITATION	5
1.1.	Approved Fuel	5
2.	Japanese Placards	6
2.1.	Operating Limitations	6
2.2.	Rear Seats	6
2.3.	Other Placards	7

INTRODUCTION

This Supplement applies for Japanese registered aircraft.

It contains supplemental information to the basic information approved in EASA aircraft Flight Manual when the aircraft is registered in Japan.

This supplement is applicable to both P2006T digital and analogue configuration.

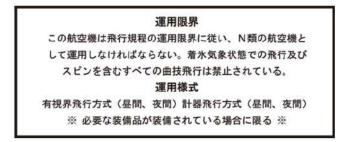
For Limitations, procedures, and performance information not contained in this supplement, refer to the basic Aircraft Flight Manual.

1. LIMITATION

1.1. Approved Fuel

- MOGAS ASTM D4814
- MOGAS EN 228 Super/Super plus (min. RON 95)
- AVGAS 100 LL (ASTM D910)

NOTE: For additional information, refer to Rotax Service Instruction No. 912-016, latest issue.


Prolonged use of Aviation Fuel Avgas 100LL results in greater wear of valve seats and greater combustion deposits inside cylinders due to higher lead content. It is therefore suggested to avoid using this type of fuel unless strictly necessary. Make reference to Rotax Maintenance Manual who provides dedicated checks due to the prolonged use of Avgas.

2. Japanese Placards

Hereinafter the placards, related to the operating limitations and installed on P2006T, are reported.

2.1. Operating Limitations

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

2.2. Rear Seats

During Taxi, Take OFF, Landing (including Emergency Landing), both rear seats must be kept in the lowest and full aft position.

The following placard is located aside both rear seats.

4th Edition, Rev. 0

2.3. Other Placards

Description	Placard (English and Japanese)	Place
Smoking ban.	NO SMOKING │禁煙	Instruments panel, right side
Ditching emergency exit: opening instructions	HTCHING H	Ditching emergency exit handle: internal side
Ditching emergency exit: opening instructions	DITCHING THE RGENCE 2. PULL MARKEN MA	Ditching emergency exit handle: external side
Door locking system: by-pass instructions	FOR EMERGENCY ACCESS 緊急開扉 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE 1. 赤いタブを下側に 押したまま保持し 2. ハンドルを用いて ドアを開けること	Main door and emergency exit: internal side
Door locking system: by-pass instructions	FOR EMERGENCY EXIT 1. PUSH AND HOLD RED TAB DOWN 2. OPEN DOOR WITH HANDLE 第のタブを下側に 押したまま保持し 2. ハンドルを用いて ドアを開けること	Main door and emergency exit: external side

4th Edition, Rev. 0

Section 9 – Supplements Supplement no. G15 – Japan AFMS

Emergency exit label	EMERGENCY EXIT 非常口	Emergency exit: internal and external side
Main door: exit	WARNING VERIFY PROPELLER STOPPED BEFORE OPENING DOOR EXIT TOWARDS FRONT OF AIRCRAFT	Main door,
instructions		internal side

4th Edition, Rev. 0

SUPPLEMENT NO. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

Rev	Revised	Description of	Tecnam Approval			EASA Approval Or Under DOA
Nev	page	Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	EASA Approval No. 10058288
1	SMD4-15, SMD4-6	S4-15 replaced by S4-6	A. Sabino	C.Caruso	M. Oliva	DOA Privilagos
1	SMD2-12	Cancelled. Information in- tegrated in basic AFM.	A. Sabino	C.Caruso	M. Oliva	DOA Privileges

RECORD OF REVISIONS

Section 9 - Supplements

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

LOEP

	Pages	Revision
Cover pages	G16–1 thru 10	<i>Rev.</i> 1
Section 3	SMD3 – 15 thru 16	<i>Rev.</i> 0
	SMD3 - 30	<i>Rev.</i> 0
Section 4	SMD4 – 6	Rev. 1
Section 7	MD7 – 29	<i>Rev.</i> 0
	SMD7 – 37	<i>Rev.</i> 0
	SMD7 – 39	<i>Rev.</i> 0

Section 9 - Supplements

Ed.4, Rev.1

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin G950 Integrated Flight Deck System (Design Change MOD 2006/002) and with MD302. The MD302 refers to the following design change:

• MOD2006/212 - MD302 Alternative Stand-By Instrument

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G1 pages containing information amended as per the Design Change in subject.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

SECTION 1 - GENERAL

Apply following instruction:

See Basic AFM - Section 1

Section 9 - Supplements

Ed.4, Rev.1

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

SECTION 2 - LIMITATIONS

Apply following instructions:

See Basic AFM - Section 2

Supplement no. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

SECTION 3 – EMERGENCY PROCEDURES

Apply following pages replacement procedure:

Supplement G16 - EMERGENCY PROCEDURES page		Supplement S1 Section 3 page
MD3 – 15 thru 16	REPLACE	Page S3–15 thru 16 of Supplement G1, Section 3
MD3 - 30	REPLACES	Page S3–30 of Supplement G1, Section 3

Supplement no. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

COSTRUZIONA AFRONAUTICHE P2006T - Aircraft Flight Manual

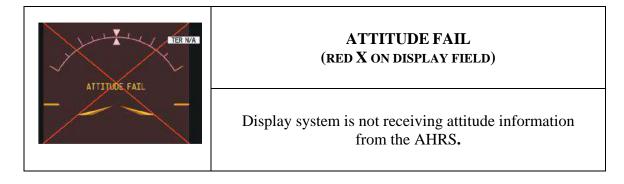
2.9 Loss of information displayed

When a LRU or a LRU function fails, a large red 'X' is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-00), last issue, Appendix A, Message Advisories list.

2.10 LOSS OF AIRSPEED INFORMATION

NOTE


INSTRUCTION: revert to stand-by airspeed indicator

Page SMD3-15

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual

Page SMD3-16

2.10 Loss of attitude information

INSTRUCTION: revert to stand-by attitude indicator

2.11 LOSS OF ALTITUDE INFORMATION

ALTITUDE FAIL (red X on display field)
Display system is not receiving altitude input from the Air Data Computer.

INSTRUCTION: revert to stand-by altitude indicator

Page SMD3-30

5.3 MD 302 BATTERY FAILURE

The MD302 internal battery will recharge itself from aircraft power while in normal mode. A battery capacity check occurs each time the unit is powered on. If the battery capacity is determined to be less than 80%, there will be a battery pack warning. If the warning persists more than once in a short time the battery must be replaced.

5.4 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- Continue the mission

OFF (hot and cold air) OPEN

SECTION 4 - NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G16 - NORMAL PROCEDURES page		Supplement S1 Section 4 page
SMD4 – 6	REPLACES	Page S4–6 Supplement G01, Section 4

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

GARMIN G950 IFDS – MD302 ALTERNATIVE STAND-BY INSTRUMENT

COSTRUZIONA A ERONAUTICHE P2006T - Aircraft Flight Manual Page SMD4-6

The altitude calculated by G950 GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters, such as the GDC 74A Air Data Computer, or other altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by the G950 PFD or other pressure altimeters in aircraft.

NOTE If the pilot profile is changed during the flight, the HSI could not indicate the correct LOC or VOR indication until the pilot manually tunes the active frequency. Make sure that the displayed indication on the HSI indicator is consistent with the selected frequency.

NOTE The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and complete-ness of the data. Reference "Garmin G950 Pilot's Guide for the Tec-nam P2006T" (P/N 190-01146-XX), last issue, Appendix B concerning SD card use and databases.

NOTE

Use of polarized eyewear may cause the flight displays to appear dim or blank.

MD302 system use

"The detailed description, operation and functionalities of MD302 Stand By Attitude Module are provided on MD302 Stand-By Attitude Module Pilot's Guide" document P/N 9017846 rev.D, which is to be considered to be attached to this AFM and kept onboard the aircraft.

SECTION 5 - PERFORMANCE

Apply following instruction:

See Basic AFM - Section 5

Ed.4, Rev.1

Section 9 - Supplements

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

See Basic AFM - Section 6

Supplement no. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Supplement G16 - AIRFRAME AND SYSTEM DESCRIPTION page		Basis AFM/Supplement S1 Section 7 page
MD7 – 29	REPLACES	Page 7 – 29 of Basic AFM, Section 7
SMD7 – 37	REPLACES	Page 7 – 37 of Supplement S1, Section 7
SMD7 – 39	REPLACES	Page 7 – 39 of Supplement S1, Section 7

Apply following pages replacement procedure:

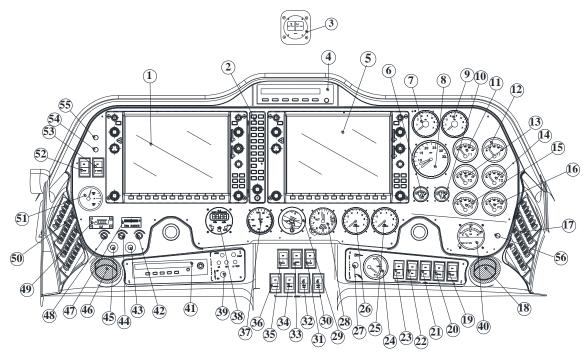
Section 9 - Supplements

Supplement no. G16 - MD302 ALTERNATIVE STAND-BY INSTRUMENT

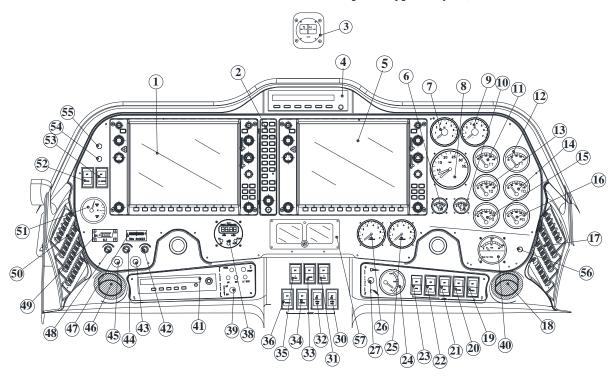
16. MD302 ALTERNATIVE STAND-BY INSTRUMENT

In order to improve the digital version cockpit layout of the P2006T in terms of human-machine interface, weight saving and reliability this backup instrument V.1.0.5 is installed.

For more details refer to MOD2006/212.



All MD302 Stand-by Attitude Module settings, set up during the aircraft delivery or after a maintenance activity, must not be modified.



In case of replacement of MD302 Stand-by Attitude Module, verify proper software load and confirm that its software version number is compliance with that one showed above, before install it. GARMIN G950 IFDS – MD302 ALTERNATIVE STAND-BY INSTRUMENT COSTRUZION AERONAUTCHE P2006T - AIRCRAft Flight Manual Page SMD7-37

17. INSTRUMENTS PANEL

GARMIN G950 IFDS - Instruments panel (typical layout)

GARMIN G950 IFDS - Instruments panel - layout with MD302 digital stand-by instrument(MOD2006/212)

GARMIN G950 IFDS - MD302 ALTERNATIVE STAND-BY INSTRUMENT

P2006T - Aircraft Flight Manual

Page SMD7-39

Item	Description
31	RH Field
32	LH Cross bus switch
33	Master switch
34	RH Avionic switch
35	LH Field
36	LH Avionic switch
37	Standby Airspeed indicator
38	Chronometer
39	LG control knob
40	Voltammeter Indicator
41	ADF control panel
42	Cockpit light dimmer
43	Cabin heat (warm air from RH engine)
44	Avionics lights dimmer
45	Cabin heat (warm air from LH engine)
46	LH ram air inlet
47	Trim rudder indicator
48	Switches built-in lights dimmer
49	ELT Indicator
50	RH breakers panel
51	Pitch trim indicator
52	Pitot heat switch
53	A/P Master switch
54	A/P trim master switch
55	Fire Detector push-to-test
56	LH/RH Ammeter selector switch
57	Mid-Continent MD302 Stand-By Instrument

Supplement G16: pages replacement instructions

SECTION 8 – GROUND HANDLING & SERVICE

Apply following instruction:

See Basic AFM - Section 8

Ed.4, Rev.1

Section 9 - Supplements

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

INTENTIONALLY LEFT BLANK

Ed.4, Rev.1

Section 9 - Supplements

Supplement no. G16 – MD302 ALTERNATIVE STAND-BY INSTRUMENT

SUPPLEMENT NO. G17 - STORMSCOPE

Rev	Revised	Revised Description of	Тес	nam Approv	EASA Approval Or Under DOA	
Nev	page	Revision	DO	OoA	HDO	Privileges
0	-	First issue	D. Ronca	C. Caruso	M. Oliva	DOA Approval
1	all	Page replacement and equipment list suppressed	A. Sabino	C. Caruso	M. Oliva	DOA Approval

RECORD OF REVISIONS

LOEP

	Pages	Revision
Cover pages	G17 – 1 thru 6	<i>Rev.</i> 1

INTRODUCTION

This supplement contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with WX500 Stormscope; this equipment refers to the following design change:

• MOD2006/216 – Stormscope installation

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G1, as applicable.

SECTION 1 - GENERAL

The following information supplements Section 1 of basic AFM and related supplements.

The Stormscope does neither replace a weather radar nor weather information. The Stormscope is only used as an additional source of information beside approved weather information.

SECTION 2 - LIMITATIONS

See Section 2 of basic AFM and related supplements.

SECTION - EMERGENC PROCEDURES

See Section 3 of basic AFM and related supplements.

SECTION 4 - NORMAL PROCEDURES

See Section 4 of basic AFM and related supplements.

SECTION 5 - EMERGENC PROCEDURES

See Section 5 of basic AFM and related supplements.

SECTION 6 - WEIGHT AND BALANCE

See Section 6 of basic AFM and related supplements.

SECTION AIRFRAME AND S STEMS DESCRIPTION

The following information supplements Section 7 of basic AFM and related supplements.

WX500 STORMSCOPE SYSTEM

The thunderstorm detection passive sensor WX500 Stormscope is fully operated and displayed via the Garmin G950 Multi function display, in the map menu. Is is installed in order to shown the lightning data.

The sensor maps discharge the electrical activity for 360 degrees around the aircraft to a distance of 200 nautical miles, in relation to the aircraft's *Stormscope* antenna. The estimated distance from the aircraft to the discharge point is reported in NM while the bearing represents the angle between the fore and aft axis of the antenna, which is in line with the longitudinal axis (nose) of the aircraft.

The WX-500 processor is installed in the right side of the baggage compartment while the NY-163 antenna is installed on the bottom side of the tail.

For more details see WX-500 Installation Manual and the latest revision of the Garmin G950 Pilot's guide Doc. No.: 190-00726-00.

W D C

In the following figure the *Stormscope* wiring diagram is reported.

Wiring diagram

Section 9 - Supplements

Ed.4, Rev.1

Supplement no. G17 – STORMSCOPE

SECTION 8 - AIRCRAFT CARE AND MAINTENANCE

See Section 8 of basic AFM and related supplements.

INTENTIONALLY LEFT BLANK

COSTRUZIONA ARONAUTICHE P2006T - Aircraft Flight Manual Page G19-1

SUPPLEMENT No. G19

G1000 NXi, Increased MTOW, Increased V_{LE}/V_{L0} and MD302

Rev	Revised	Description of	Tecnam Approval			EASA Approval or Under DOA
K CV	page	Revision	DO	OoA	HDO	Privileges
0	-	Initial issue	A. Sabino	C. Caruso	M. Oliva	EASA Approval N° 10062361
1	S2-6,8,12,16	Suppressed, information re- ported in basic AFM		Sabino C. Caruso	M. Oliva	DOA Approval
1	S4-24	Oil T indication for MOD2006/002	A. Sabino			DOA Appiova
2	S4-25 to 27	Normal procedures amended	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA, ref. EASA.21J.335 (MOD2006/345.181120)
3	S2-30, S7-40, 41	GIA and GMA update, elec- tric loads arrangement up- dated	G. Valentino	D. Ronca	M. Oliva	Approved under the authority of DOA, ref. EASA.21J.335 (MOD2006/336.180703)
	S3-1	Index updated				Approved under the authority of DOA, ref.
4		Electrical loads distribution updated	G. Valentino	D. Ronca	M. Oliva	EASA.21J.335 (MOD2006/375.190826)
-	S3-33	Electrical pitch trim control failure procedure added		D. Ronca		

RECORD OF REVISIONS

4th Edition, Rev. 4

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\mbox{\tiny LE}}/V_{\mbox{\tiny LO}}$ and MD302

LOEP

I

I

	Pages	Revision
Cover pages	G19-1,2	Rev 11
	G19-7	Rev 1
	3 thru 6, 8 thru 20	Rev 0
Section S2	5,7, 13 thru 16, 21,22,29	Rev 0
	30	Rev 3
Section S3	2 thru 6, 10 thru 32, 34 thru 62	Rev 0
	1, 7 thru 9, 33	Rev 4
Section S4	25 to 27	Rev 2
	24	Rev 1
	1 thru 23, 28 thru 38	Rev 0
Section S5	1 thru 22	Rev 0
Section S7	40, 41	Rev 4
	1, 2, 29 thru 39, 42	Rev 0

4th Edition, Rev. 4

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\mbox{\tiny LE}}/V_{\mbox{\tiny LO}}$ and MD302

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with the following design changes:

- Weight Increment (Design Change MOD2006/015)
- V_{LE} and V_{LO} Increment (Design Change MOD2006/033)
- MD302 Alternative Stand-By Instrument (Design Change MOD2006/212)
- Garmin G1000 NXi Avionic Suite (Design Change MOD2006/271).

The information herein contained supplements or supersedes the basic Aircraft Flight Manual: detailed instructions are provided to allow the owner for replacing the AFM pages containing information amended as per the Design Change in subject.

It is the owner's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

Garmin G1000 NXi Pilot's Guide for Tecnam P2006T (P/N 190-02286-00) – last issue – must be carried on board the airplane at all times.

MD302 Stand-By Attitude Module Pilot's Guide" document *P/N 9017846 rev.D is to be considered to be attached to this AFM and kept onboard the aircraft.*

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

Supplement G19: pages replacement instructions

SECTION 1 - GENERAL

See Basic AFM - Section 1

4th Edition, Rev. 0

Section 9 - Supplements

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

Supplement G19: pages replacement instructions

SECTION 2 - LIMITATIONS

Supplement G19 – LIMITATIONS page		Basic AFM Section 2 page
S2-5	REPLACES	2-5
S2-7	REPLACES	2-7
S2-13	REPLACES	2-13
S2-14	REPLACES	2-14
S2-15	REPLACES	2-15
S2-21	REPLACES	2-21
S2-22	REPLACES	2-22
S2-29	REPLACES	2-29
S2-30	REPLACES	2-30

Apply following pages replacement procedure:

4th Edition, Rev. J

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

P2006T - Aircraft Flight Manual

2. SPEED LIMITATIONS

The following table addresses the airspeed limitations and their operational significance:

SPER	ED		KIAS	KCAS	REMARKS	
V _{NE}	Never exceed spee	ed	171	172	Do not exceed this speed in any operation.	
V _{NO}	Maximum Structural Cruising Speed		138	136	Do not exceed this speed except in smooth air, and only with caution.	
VA	Design Manoeuvr	ng speed	122	119	Do not make full or abrupt control movement above	
VO	Operating Manoeuvring speed				this speed, because under certain conditions the air- craft may be overstressed by full control movement.	
V _{LE}	Maximum Landing Gear ex- tended speed		122	119	Do not exceed this speed with the landing gear ex- tended.	
V _{LO}	Maximum Landing Gear oper- ating speed		122	119	Do not exceed this speed when operating the landing gear.	
V _{FE}	Maximum flaps	FULL	93	93	Do not exceed this speed for	
	extended speed	Т.О.	122	119	indicated flaps setting.	
V _{MC}	Aircraft minimum control speed with one engine inoper- ative		62	62	Do not reduce speed below this value in event of one engine inoperative condi- tion.	

3. AIRSPEED INDICATOR MARKINGS

The Airspeed Indicator displays airspeed on a rolling number gauge using a moving tape. The airspeed is displayed inside the black pointer. The pointer remains black until reaching never-exceed speed (V_{NE}), at which point it turns red.

Airspeed indicator markings and their colour code are explained in the following table.

MARKING	KIAS	EXPLANATION
White band	54-93	Lower limit is V _{so} , upper limit is the maxi- mum allowable speed with flaps extended in <i>FULL</i> position.
Red line	62	Minimum aircraft control speed with one en- gine inoperative and flaps set to T.O.
Green band	66-138	Normal aircraft operating range (lower limit is V_{S1} , stall speed in "clean" configuration, and upper limit is the maximum structural cruise speed V_{NO}).
Blue line	84	Best rate-of-climb speed with one engine in- operative.
Yellow band	138-171	Speed range where manoeuvres must be con- ducted with caution and only in smooth air.
Red line	171	Maximum speed for all operations.

COSTRUZIONI A RENNAUTICHE P2006T - Aircraft Flight Manual Page S2 - 13

13. WARNINGS, CAUTIONS AND ADVISORIES LIGHTS

Following table addresses the warning and caution alerts and safe operating annunciations shown (unless differently specified) on the Annunciation Window:

Warning alert (RED)	Cause
L BUS VOLT HIGH	LH electric system overvoltage
R BUS VOLT HIGH	RH electric system overvoltage
L COOLANT LOW	Left engine - coolant liquid low level
L COOLANT LOW	Right engine - coolant liquid low level
PILOT DR OPEN	Main door open and/or unlocked
REAR DR OPEN	Rear door open and/or unlocked
LH ENGINE FIRE	Left engine compartment: fire detected
RH ENGINE FIRE	Right engine compartment: fire detected
LG TRANSITION	One or more legs are in transition phase and/or the selected retracted/extended position is not yet reached
Caution alert (AMBER)	Cause
Caution alert (AMBER) L ALT FAIL	Cause LH generator failure
L ALT FAIL	LH generator failure
L ALT FAIL R ALT FAIL	LH generator failure RH generator failure
L ALT FAIL R ALT FAIL PITOT HEAT	LH generator failure RH generator failure Pitot heating system failure/not activated
L ALT FAIL R ALT FAIL PITOT HEAT EXT POWER ON	LH generator failure RH generator failure Pitot heating system failure/not activated External electrical supply connected
L ALT FAIL R ALT FAIL PITOT HEAT EXT POWER ON GEAR PUMP ON	LH generator failure RH generator failure Pitot heating system failure/not activated External electrical supply connected LG pump electrically supplied
L ALT FAIL R ALT FAIL PITOT HEAT EXT POWER ON GEAR PUMP ON Safe operating annunciation (GREEN)	LH generator failure RH generator failure Pitot heating system failure/not activated External electrical supply connected LG pump electrically supplied Indication
L ALT FAIL R ALT FAIL PITOT HEAT EXT POWER ON GEAR PUMP ON Safe operating annunciation (GREEN) L FUEL PUMP ON	LH generator failure RH generator failure Pitot heating system failure/not activated External electrical supply connected LG pump electrically supplied Indication Left engine - electrical fuel pump ON

EASA Approved

4th Edition, Rev. 0

G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

Aural means are provided by Garmin G1000 NXi: a repeating tone is associated to the warning alerts and a single chime is associated to the caution alerts. Safe operating annunciations do not have any aural chime generated.

Make reference to Garmin G1000 NXi Pilot's Guide for P2006T (P/N 190-02286-00), last issue.

4th Edition, Rev. 0

14 WEIGHTS

Condition	Weight	
Maximum takeoff weight	1230 kg	2712 lb
Maximum landing weight	1230 kg	2712 lb
Maximum zero wing fuel weight	1195 kg	2635 lb

NOTE

Refer to Para. 21.4 of this AFM Section for baggage loading limitations.

G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page S2 - 21

21. LIMITATIONS PLACARDS

Hereinafter the placards, related to the operating limitations and installed on *P2006T*, are reported.

21.1. SPEED LIMITATIONS

On the left side instrument panel, the following placards reporting the speed limitations are placed:

Operating Manoeuvring speed Vo = 122KIAS

Maximum L.G. op. speed $V_{LO} / V_{LE} = 122 KIAS$

G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302

21.2. OPERATING LIMITATIONS

On the instrument panel, it is placed the following placard reminding the observance of aircraft operating limitations; make reference to Para. 22 for the list of equipment required on board to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

> This A/C can be operated only in normal category DAY-NIGHT-VFR-IFR (with required equipment) in non-icing conditions. All aerobatics manoeuvres including spinning are prohibited. For operational limitations refer to FLIGHT MANUAL

22. KINDS OF OPERATIONS EQUIPMENT LIST

This paragraph reports the KOEL table, concerning the equipment list required on board under CS-23 regulations to allow flight operations in VFR Day, VFR Night, IFR Day and IFR Night conditions.

Flight in VFR Day and Night, IFR Day and Night is permitted only if the prescribed equipment is installed and operational.

Additional equipment, or a different equipment list, for the intended operation may be required by national operational requirements and also depends on the route to be flown.

G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

I

P2006T - Aircraft Flight Manual Page S2 - 30

Equipment	VFR Day	VFR Night	IFR Day	IFR Night
Magnetic compass	•	•	•	•
GDU 1050 - Display Unit (2)	•	•	•	•
GIA 63W/64W - Integrated Avionics Unit (2)	•	•	•	•
GDC 72 - Air Data Computer	•	•	•	•
GTP 59 - OAT sensor	•	•	•	•
GRS 79 - AHRS	•	•	•	•
GMU 44 - Magnetometer	•	•	•	•
GMA 1347/1360 - Audio panel / MKR Receiver	•	•	•	•
GTX 345R - Transponder	•	•	•	•
MD-302 - Standby Attitude Module	•	•	•	•
Pitot heating system	•	•	•	•
Breakers panels	•	•	•	•
First Aid kit	•	•	•	•
Fire extinguisher	•	•	•	•
Fire detectors (2)	•	•	•	•
Position lights	•	•	•	•
Landing light	•	•	•	•
Taxi light	•	•	•	•
Strobe lights	•	•	•	•
Torch		•	•	•
Cabin light		•	•	•
Panel lights		•	•	•
Map lights		•	•	•
Cockpit lights		•	•	•
Emergency light	•	•	•	•
Volt-Ammeter	•	•	•	•
ELT	•	•	•	•
Alternate static source	•	•	•	•
Stall warning system	•	•	•	•
KN63 - DME	l l		•	•
L	VFR Day	VFR Night	IFR Day	IFR Night

4th Edition, Rev. 3

Supplement G19: pages replacement instructions

SECTION 3 - EMERGENCY PROCEDURES

Supplement G19 Section 3 – EMERGENCY PROCEDURES replaces Basic AFM Section 3 as a whole

4th Edition, Rev. 0

Section 9 - Supplements AFMS G19 – G1000 NXI, Increased MTOW, Increased V_{LE}/V_{L0} and MD302

INTENTIONALLY LEFT IN BLANK

4th Edition, Rev. 0

Section 9 - Supplements AFMS G19 – G1000 NXI, Increased MTOW, Increased VLE/VLO and MD302 COSTRUZIONA AERONANUTCHE P2006T - Aircraft Flight Manual Page S3 - 1

SECTION 3 – EMERGENCY PROCEDURES

INDEX

1.	INTRODUCTION	. 3
1.1.	Engine failure during takeoff run	. 3
2.	AIRPLANE ALERTS	. 6
2.1	Single alternator failure / overvoltage	. 7
2.2	Both alternators failure	. 8
2.3	Both alternators overvoltage	. 9
2.4	Failed door closure	10
2.5	Pitot heating system failure	11
2.6	Coolant liquid low level	12
2.7	Gear Pump failure	13
2.8	Engine fire	14
2.9	Loss of information displayed	15
2.10	Loss of airspeed information	15
2.10	Loss of attitude information	16
2.11	Loss of altitude information	16
2.12	Loss of vertical speed information	17
2.13	Loss of heading information	17
2.14	Display failure	19
3.	ENGINE SECURING	21
4.	POWERPLANT EMERGENCIES	-
4.1	Propeller overspeeding	
4.2	CHT limit exceedance	
4.3	Oil temperature limit exceedance	
4.4	Oil pressure limits exceedance	
4.5	Low fuel pressure	27
5.	OTHER EMERGENCIES	
5.1	Emergency descent	
5.2	Total electrical failure	
5.3	Static ports failure	
5.4	Unintentional flight into icing conditions	31
5.5	Carburettor icing	32
5.6	Flaps control failure	
5.7	Electrical pitch trim control failure	33
6	ONE ENGINE INOPERATIVE PROCEDURES	
6.1	Characteristic airspeeds with one engine inoperative	
6.2	Inflight engine restart	
6.3	Engine failure during takeoff run	
6.4	Engine failure during climb	
6.5	Engine failure in flight	40

4th Edition, Rev. 4

	ECNAM P2006T - Aircraft Flight Manual	Page S3 - 2
6.6	One engine inoperative landing	41
7	LANDING GEAR SYSTEM FAILURES	42
7.1	Emergency landing gear extension	42
7.2	Complete Gear up or nose gear up landing	43
7.3	Partial Main LG extension	45
7.4	Failed retraction	47
7.5	Unintentional landing gear extension	47
8	SMOKE AND FIRE OCCURRENCE	49
8.1	Engine fire on the ground	-
8.2	Engine fire during takeoff run	
8.3	Engine fire in flight	
8.4	Electrical smoke in cabin on the ground	
8.5	Electrical smoke in cabin during flight	
9	UNINTENTIONAL SPIN RECOVERY	55
10	LANDING EMERGENCIES	56
10.1	Landing without engine power	56
10.2	Landing with Nose landing gear tire deflated	58
10.3	Landing with a known main landing gear tire deflated	59
10.4	Landing without brakes	60
11	AIRCRAFT EVACUATION	61
12	DITCHING	62

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 3

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

Before operating the aircraft, the pilot should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1. ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder

3. --

4. --

BOTH IDLE Keep heading control

b. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G1000 NXI Pilot's Guide for Tecnam P2006T(P/N 190-02286-00) - last issue - and, in particular, with the present AFM Section.

Garmin G1000 NXI Pilot's Guide for Tecnam P2006T (P/N 190-02286-00) – last issue - must be carried onboard the airplane at all times.

4th Edition, Rev. 0

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 4

Garmin G1000 NXI has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G1000 NXI. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

- 1. Keep self-control and maintain aircraft flight attitude and parameters
- 2. Analyse the situation identifying, if required, the area for a possible emergency landing
- 3. Apply the pertinent procedure
- 4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable

area at which a safe approach and landing is assured. Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made. COSTRUZIONALARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 5

INTENTIONALLY LEFT BLANK

Section 3 – Emergency procedures

4th Edition, Rev. 0

2. AIRPLANE ALERTS

Annunciation Window, located to the right of the Altimeter and Vertical Speed Indicator, supplies 16 alerts for warnings and cautions along with safe operating annunciations. The colours are as follows:

GREEN:	to indicate that pertinent device is turned ON
AMBER:	to indicate no-hazard situations which have to be considered and
	which require a proper crew action
RED:	to indicate emergency conditions

Warning alert text is shown in red in the Annunciation Window and is accompanied by a continuous chime and a flashing WARNING Softkey annunciation. Selecting the WARNING Softkey acknowledges the presence of the warning alert and stops the aural chime.

Caution alert text is shown in yellow in the Annunciation Window and is accompanied by a single chime and a flashing CAUTION Softkey annunciation. Selecting the CAUTION Softkey acknowledges the presence of the caution alert. Caution voice alerts repeat three times or until acknowledged by selecting the CAU-TION Softkey.

All aircraft annunciations can be displayed simultaneously in the Annunciation Window. A white horizontal line separates annunciations that are acknowledged from annunciations that are not yet acknowledged. Higher priority annunciations are displayed towards the top of the window.

In order to give a short description about the airplane alerts, text messages are displayed on the Alerts Window: pressing the ALERTS Softkey displays the Alerts Window, pressing the ALERTS Softkey a second time removes the Alerts Window from the display. When the Alerts Window is displayed, the FMS knob can be used to scroll through the alert message list.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 7

2.1 SINGLE ALTERNATOR FAILURE / OVERVOLTAGE

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
(OR
R ALT FAIL	Rh Alternator
1. FIELD LH (or RH)	OFF
2. FIELD LH (or RH)	ON
	ALT caution stays displayed
<i>3.</i> FIELD LH (or RH) <i>4.</i> Avionic LH	OFF OFF
5. ADF (if installed)	OFF

The battery and a single generator are able to supply the electrical power necessary for flight, but redundancy is lost.

If conditions permit:

Switching CROSS BUS OFF will further reduce alternator load; the decision mainly depends on weather conditions.

6. CROSS BUS LH (or RH) OFF

Equipment will be lost accordingly to the following table:

NOTE

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Taxi Light	Trim A/P	COM 2	Rudder Trim
Pitot Heat	A/P	M.F.D.	Co-pilot seat
Voltage regulator	XPDR	A.D.F. (if installed)	Voltage regulator RH
Cabin fan	D.M.E.	GPS/NAV 2	Nav Light
	Turn coord	Converter 12/24	Audio panel
	TCAS (if installed)	12V socket	Avionic Fan

7. Land as soon as practicable

2.2 **BOTH ALTERNATORS FAILURE**

Annunciation window	Alert window
	Lh Alternator
L ALT FAIL	
R ALT FAIL	Rh Alternator

In event of both L and R ALT FAIL caution alerts displayed:

- 1. FIELD LH and RH BOTH OFF BOTH ON
- 2. FIELD LH and RH

If the LH (or RH) ALT caution stays displayed

- 1. Verify good ammeter indications on restored alternator
- 2. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH ALT cautions stay displayed

3.	FIELD LH and RH	BOTH OFF
4.	CROSS BUS LH and RH	BOTH OFF

If engine starting battery modification is applied

ON

- 5. EMERG BATT switch
- 6. Land as soon as possible.

If engine starting battery modification is not applied

5. Land as soon as possible.

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Taxi Light	Trim A/P	COM 2	Rudder Trim
Pitot Heat	A/P	M.F.D.	Co-pilot seat
Voltage regulator	XPDR	A.D.F. (if installed)	Voltage regulator RH
Cabin fan	D.M.E.	GPS/NAV 2	Nav Light
	Turn coord	Converter 12/24	Audio panel
	TCAS (if installed)	12V socket	Avionic Fan

NOTE

The battery can supply electrical power for at least 30 minutes.

4th Edition. Rev. 4

P2006T - Aircraft Flight Manual

Page S3 - 9

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

- 1. FIELD LH and RHBOTH OFF
- 2. FIELD LH and RH

BOTH ON (one at a time)

If the LH (or RH) BUS VOLT HIGH warning is still displayed

- 3. Verify good ammeter indications on restored alternator
- 4. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

- 3. CROSS BUS LH and RH BOTH OFF
- 4. FIELD LH and RH BOTH OFF
- 5. FIELD LH and RH BOTH ON (one at a time)

If LH (or RH) BUS VOLT HIGH warning is still displayed

- 6. Verify good ammeter indications on restored alternator
- 7. Switch CROSS BUS on the restored alternator side
- 8. Refer to Single alternator failure / overvoltage drill (Para 2.1)

If both LH and RH BUS VOLT HIGH warning are still displayed

6. FIELD LH and RH

If engine starting battery modification is applied

BOTH OFF

ON

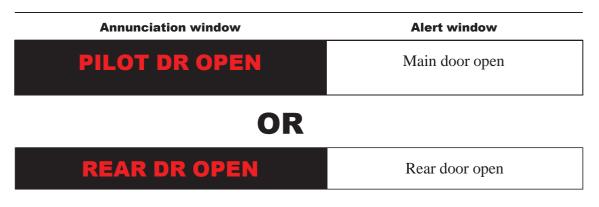
- 7. EMERG BATT switch
- 8. Land as soon as possible.

If engine starting battery modification is not applied

7. Land as soon as possible

Equipment will be lost accordingly to the following table:

LH Gen Bus	LH Avionic Bus	RH Avionic Bus	RH Gen Bus
Taxi Light	Trim A/P	COM 2	Rudder Trim
Pitot Heat	A/P	M.F.D.	Co-pilot seat
Voltage regulator	XPDR	A.D.F. (if installed)	Voltage regulator RH
Cabin fan	D.M.E.	GPS/NAV 2	Nav Light
	Turn coord	Converter 12/24	Audio panel
	TCAS (if installed)	12V socket	Avionic Fan


```
NOTE
```

The battery can supply electrical power for at least 30 minutes.

4th Edition, Rev. 4

Section 3 – Emergency procedures AIRPLANE ALERTS COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 10

2.4 FAILED DOOR CLOSURE

In case of door opening / unlocking, related PILOT or REAR DR OPEN alert is displayed. In this case, apply following procedure:

ON THE GROUND

	Passengers and crew Affected door	w seat belts Fasten and tighten Verify correctly closed
		<u>If door is open</u>
3.	Relevant engine	Shut down
4.	Affected door	Close and check
		<u>If door is closed</u>
3.	Locking device	Check
		If down in unlocked position
4.	Abort mission.	

IN FLIGHT

1.	Passengers and crew seat belts	Fasten and tighten
2.	Affected door and locked device	Verify correctly closed

If door is open or locking device is unlocked

3. Land as soon as possible

2.5 **PITOT HEATING SYSTEM FAILURE**

Annunciation window	Alert window
PITOT HEAT ON	Pitot heat
PITOT HEAT	Pitot heat

When the Pitot Heating system is activated, the green PITOT HEAT advisory light is turned ON.

If the amber PITOT HEAT caution light turns OFF, then the Pitot Heating system is functioning properly. Anytime the amber PITOT HEAT caution light is ON at the same time the green PITOT HEAT light is ON, then the Pitot Heating system is not functioning properly.

1. Pitot heat switch *OFF*

2. Verify Pitot Heating circuit breaker is IN

- 3. Pitot heat switch ON
- 4. Check PITOT HEAT caution light:

If the amber light stays ON, assume a failure in the pitot heating system. Avoid visible moisture and OATs below 10 deg C.

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 12

2.6 COOLANT LIQUID LOW LEVEL

When the engine coolant liquid level goes under the lower limit, the related L or R COOLANT LOW warning alert is displayed. Low coolant level condition may lead to high CHT/CT. When the warning is displayed, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- *3.* Land as soon as practical

If CH/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 4)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

TECNAM P2006T - Aircraft Flight Manual Page S3 - 13

2.7 GEAR PUMP FAILURE

The GEAR PUMP ON caution light turns ON when the landing gear hydraulic pump is electrically supplied.

After the landing gear retraction, if the red TRANS light turns OFF and the GEAR PUMP ON caution stays turned ON, this could indicate a gear pump relay failure to ON.

If TRANS light is OFF

1. Continue the mission monitoring the caution light.

If TRANS light is ON

2. Landing gear is not locked in UP position

NOTE

The electrical gear pump, continuously supplied, causes a current absorption which does not affect the mission unless this failure is coupled with the overall electrical failure. In this case, the residual battery endurance may be consistently lower than 30 minutes.

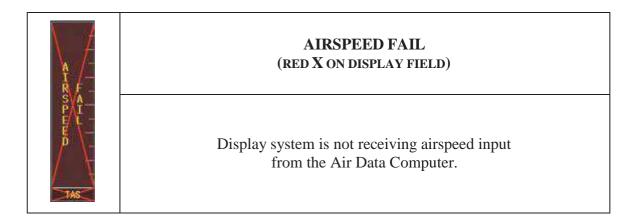
COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 14

2.8 ENGINE FIRE

In event of engine fire, the LH or RH ENGINE FIRE warning alert is displayed. Refer to following procedures:

FIRE ON THE GROUND:	see Para. 8.1
FIRE DURING TAKEOFF RUN:	see Para. 8.2
FIRE IN FLIGHT:	see Para. 8.3

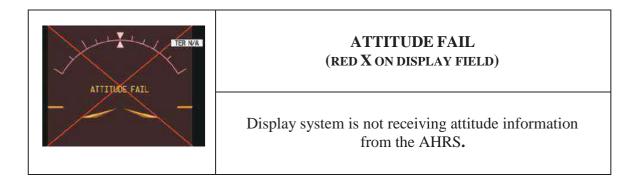
COSTRUZIONIA ARMANIA P2006T - Aircraft Flight Manual Page S3 - 15


2.9 LOSS OF INFORMATION DISPLAYED

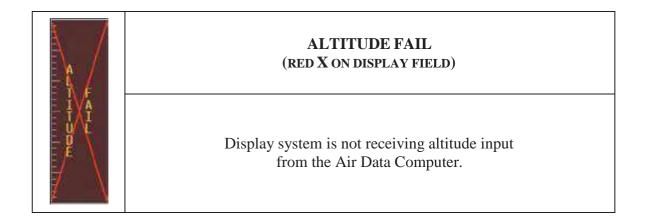
When a LRU or a LRU function fails, a large red 'X' is typically displayed on the display field associated with the failed data.

In most of cases, the red "X" annunciation is accompanied by a message advisory alert issuing a flashing ADVISORY Softkey annunciation which, once selected, acknowledges the presence of the message advisory alert and displays the alert text message in the Alerts Window. Refer to G1000 NXI Pilot's Guide for Tecnam P2006T (P/N 190-02286-00), last issue, Appendix A, Message Advisories list.

2.10 LOSS OF AIRSPEED INFORMATION

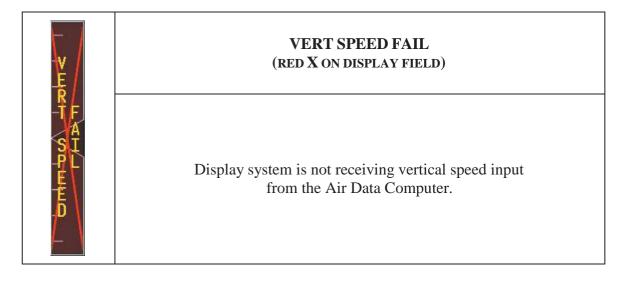

NOTE

INSTRUCTION: revert to standby airspeed indicator

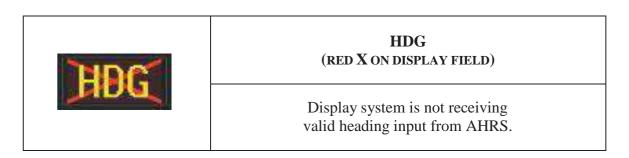

COSTRUZION ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 16

2.11 LOSS OF ATTITUDE INFORMATION

INSTRUCTION: revert to standby attitude indicator


2.12 LOSS OF ALTITUDE INFORMATION

INSTRUCTION: revert to standby altitude indicator


COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 17

2.13 LOSS OF VERTICAL SPEED INFORMATION

INSTRUCTION: determine vertical speed on the basis of altitude information

2.14 Loss of heading information

INSTRUCTION: revert to magnetic compass

COSTRUZIONIA AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 18

INTENTIONALLY LEFT BLANK

2.15 DISPLAY FAILURE

In the event of a display failure, the G1000 NXi System automatically switches to reversionary (backup) mode. In reversionary mode, all important flight information is presented on the remaining display in the same format as in normal operating mode. The change to backup paths is completely automated for all LRUs and no pilot action is required.

if the system fails to detect a display problem

1. DISPLAY BACKUP button

PUSH

If a display fails, the related Integrated Avionics Unit (IAU) is cut off and can no longer communicate with the remaining display: consequently the NAV and COM functions provided to the failed display by the Integrated Avionics Unit are flagged as invalid on the remaining display. COSTRUZIONALARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 20

INTENTIONALLY LEFT BLANK

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

1.	Throttle Lever	IDLE
2.	Ignition	BOTH
3.	Propeller Lever	OFF
4.	Fuel Selector	FEATHER
5.	Electrical fuel pump	OFF

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

COSTRUZIONALARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 22

INTENTIONALLY LEFT BLANK

TECNAM P2006T - Aircraft Flight Manual Page S3 - 23

4. POWERPLANT EMERGENCIES

4.1 **PROPELLER OVERSPEEDING**

The aircraft is fitted with propeller/governor set by MT-Propeller such a way that the maximum propeller rpm exceedance is prevented. In case of propeller overspeeding in flight, apply following procedure:

- 1. Throttle Lever
- 2. Propeller Lever
- 3. RPM indicator

REDUCE power to minimum practical REDUCE as practical (*not in feathering*) *CHECK*

If it is not possible to decrease propeller rpm, apply *engine securing procedure* (see Para. 3) and **land as soon as possible** applying *one engine inoperative landing* procedure (See Para. 6.6).

Maximum propeller rpm exceedance may cause the engine components damage. Propeller and engine shall be inspected in accordance with related Operators Manuals.

TECNAM P2006T - Aircraft Flight Manual Page S3 - 24

4.2 CHT LIMIT EXCEEDANCE

If CHT/CT exceeds its limit, apply following procedure:

1. Check affected engine CHT/CT

If CHT is above 135°C or CT is above 120°C

- 2. Affected engine *Reduce power setting to reduce CHT/CT up to the minimum practical*
- 3. Land as soon as practical

If CHT/CT continues to rise and engine shows roughness or power loss

- 4. Affected engine SECURE (securing procedure on Para. 3)
- **5. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

COSTRUZION AREONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 25

4.3 OIL TEMPERATURE LIMIT EXCEEDANCE

If oil temperature exceeds maximum limit (130°C):

1. OIL PRESS CHECK

If oil pressure is within limits

- 2. Affected engine *Reduce power setting to minimum applicable*
- 3. Affected engine *Keep propeller speed higher than 2000 RPM*

INCREASE

If oil pressure does not decrease

4. Airspeed

NOTE

If oil temperature does not come back within limits, the thermostatic valve, regulating the oil flow to the heat exchangers, could be damaged or an oil leakage can be present in the oil supply line.

- 5. Land as soon as practical keeping the affected engine to the minimum necessary power
- 6. Monitor OIL PRESS and CHT/CT

if engine roughness / vibrations or erratic behaviour is detected:

- 7. Affected engine *SECURE (engine securing procedure on Para. 3)*
- 8. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

TECNAM P2006T - Aircraft Flight Manual Page S3 - 26

4.4 OIL PRESSURE LIMITS EXCEEDANCE

If oil pressure exceeds its lower or upper limit (0.8 - 7 bar), apply following procedure:

Excessive oil pressure drop leads to a high pitch propeller configuration with consequent propeller feathering and engine stopping.

An excessive oil pressure value can be counteracted by decreasing propeller rpm.

1. OIL PRESS

3. Propeller Lever

CHECK

If oil pressure exceeds upper limit (7 bar)

- 2. Throttle Lever *first REDUCE affected engine power by 10%*
 - Keep low rpm
- 4. OIL PRESS *CHECK* (verify if came back within the limits)
- 5. Land as soon as practical

If oil pressure is under the lower limit (0.8 bar)

2. Land as soon as practical

If oil pressure is continuously decreasing

- 3. Affected engine SECURE (see engine securing procedure on Para. 3)
- 4. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

COSTRUZIONI A ROMANTICHE P2006T - Aircraft Flight Manual Page S3 - 27

4.5 LOW FUEL PRESSURE

If fuel pressure decreases below the lower limit (2.2 psi), apply following procedure:

1.	Fuel press	CHECK
2.	Fuel quantity	CHECK
3.	Fuel consumption	MONITOR

If a fuel leakage is deemed likely

5. Land as soon as possible.

If a fuel leakage can be excluded:

- 4. Electrical fuel pump ON
- 5. Feed the affected engine by means of opposite side fuel tank

If pressure does not come back within the limits

6. Land as soon as practical

COSTRUZIONALARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 28

INTENTIONALLY LEFT BLANK

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

OFF

ON

BOTH OFF

BOTH ON

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON if necessary

2.	MASTER S	SWITCH

- 3. FIELD LH and RH
- 4. MASTER SWITCH
- 5. FIELD LH and RH

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. **Land as soon as possible** applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

5.3 MD 302 BATTERY FAILURE

The MD302 internal battery will recharge itself from aircraft power while in normal mode. A battery capacity check occurs each time the unit is powered on. If the battery capacity is determined to be less than 80%, there will be a battery pack warning. If the warning persists more than once in a short time the battery must be replaced.

5.4 STATIC PORTS FAILURE

In case of static ports failure, the alternate static port in the cabin (shown below) must be activated.

- 1. Cabin ventilation
- 2. ALTERNATE STATIC PORT VALVE
- 3. Continue the mission

OFF (hot and cold air) *OPEN*

5.4 UNINTENTIONAL FLIGHT INTO ICING CONDITIONS

1. Carburettor heat

BOTH ON

- 2. Pitot heat
- 3. Fly as soon as practical toward a zone clear of visible moisture, precipitation and with higher temperature, changing altitude and/or direction.

ON

- 4. Control surfaces *Move continuously to avoid locking*
- 5. Propellers rpm *INCREASE to prevent ice build-up on the blades*

In event of ice build-up in correspondence of wing leading edges, stall speed increases.

Ice build-up on wing, tail fin or flight control surfaces unexpected sudden roll and/or pitch tendencies can be experienced and may lead to unusual attitude and loss of aircraft control.

Do not use Autopilot when icing formation is suspected or detected.

5.5 CARBURETTOR ICING

DURING TAKEOFF

The carburettor icing in "full throttle" mode is unlikely.

Take off in known or suspected icing formation is forbidden; in order to dispose of full engine take off power, take-off must be performed with carburettor heating OFF.

IN FLIGHT

Carburettor icing is considered probable when external air temperature is below 15° C and visible air moisture (clouds, mist, haze or fog) or atmospheric precipitation are present.

Generally, an OAT-to-dew point temperature spread lower than 10°C and OAT less than 15°C with visibility lower than 5 km is a positive indication of likely icing formation condition.

Should an inadvertent flight into known or forecast icing condition happen carburettor heating should be selected "ON" as soon as possible: the greater the advance carburettors are warmed the better the chances not to form ice and avoid engine power loss or reduction.

Keep Carb Heating "ON" until engine power is restored and area of possible icing condition is exited.

Carburettor Heating selected to "ON" will cause engine RPM reduction of about 100 RPM causing a sensible available engine power decrease.

5.6 FLAPS CONTROL FAILURE

DURING TAKEOFF

Flap UP take off, requires a T/O distance (50 ft height obstacle distance) increased by about 20%.

1. Airspeed

Keep below 93 KIAS

2. Land as soon as practical

DURING APPROACH/LANDING

If the flaps control fails, consider the higher stall speed (see Section 5, Para. 6, "Stall Speed") and an increased landing distance of about 25%.

1. Airspeed

Keep over 75 KIAS

2. Land as soon as practical on a runway of appropriate length

5.7 ELECTRICAL PITCH TRIM CONTROL FAILURE

a) Trim Runaway:

a) I fim Runaway:		
In the event of trim runaway:		
1. AP DISC switch (if AP is installed)	PRESS and HOLD	
2. TRIM DISC switch	OFF	
3. AP DISC switch (if AP is installed)	RELEASE	
Trim aircraft using trim wheel		
b) Trim Jamming: Should trim control be jammed / inoperative:		
1. Pitch trim breaker	CHECK	
If circuit breaker is OUT:		
2. Trim aircraft using trim wheel		
<i>If circuit breaker is IN:</i> 2. TRIM DISC switch	OFF	
3. Trim aircraft using trim wheel	011	

COSTRUZIONA ARCONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 34

6 ONE ENGINE INOPERATIVE PROCEDURES

The ineffectiveness of one engine results in asymmetric traction which tends to yaw and bank the aircraft towards the inoperative engine. In this condition it is essential to maintain the direction of flight compensating the lower traction and counteracting the yawing effects by mean of rudder pedals. To improve directional control, it is advisable to bank the aircraft of about 5° to the side of the operating engine. In addition, reduced available overall power and extended control surfaces will lead to a performances drop: a quick pitch attitude reduction will allow to keep a minimum safety airspeed.

The higher is the airspeed the better will be lateral and directional control efficiency: never allow airspeed to drop below V_{MCA} .

Best residual climb performances in OEI (One Engine Inoperative) condition have been recorded in Flap Up configuration and at V_{YSE} , which is marked as a Blue Line on the Airspeed indicator (calculated for maximum Take Off Weight and Sea, Level ISA condition) For actual condition V_{YSE} refer to Section 5 Para. 13, "One engine rate of climb".

 V_{XSE} is actually very close to V_{YSE} in any condition, thus best climb performance will also be associated with best climb angle (gradient) performance. Refer to Section 5 Para. 14, One-Engine Rate of Climb at V_{xSE} , for relevant data.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 35

6.1 CHARACTERISTIC AIRSPEEDS WITH ONE ENGINE INOPERATIVE

In case of one engine inoperative condition (OEI), pilot shall take into account the airspeeds shown below:

Conditions	Spec (KIA	
Minimum aircraft control speed with one engine inoperative and flaps set to T.O. (V_{MC})	62	
Best rate-of-climb speed OEI (V_{YSE})	MTOW 1180 kg	MTOW 1230 kg
	80	84
Best gradient speed OEI (V _{XSE})	79	83

P2006T - Aircraft Flight Manual Page S3 - 36

6.2 **INFLIGHT ENGINE RESTART**

After:

- *mechanical engine seizure;*

WARNING

fire; major propeller damage engine restart is not recommended.

- Carburettor heat 1.
- 2. Electrical fuel pump
- Fuel quantity indicator 3.
- **Fuel Selector** 4.
- 5. FIELD
- Ignition 6.
- Operating engine Throttle Lever 7.
- Stopped engine Throttle Lever 8.
- Stopped engine Propeller Lever 9.
- 10. Start push-button
- 11. Propeller Lever
- 12. FIELD
- 13. Engine throttle levers

14. EMERG BATT switch

ON if required ON CHECK CHECK (Crossfeed if required) **OFF** BOTH ON SET as practical IDLE FULL FORWARD PUSH SET at desired rpm *ON* (*check for positive ammeter*) SET as required

If engine restart is unsuccessful

ON (if starting battery installed)

15. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

Affected engine 16.

SECURE (see engine securing procedure Para. 3)

17. Land as soon as possible applying *one engine inoperative landing* procedure. See Para. 6.6

COSTRUZION AREONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 37

6.3 ENGINE FAILURE DURING TAKEOFF RUN

BEFORE ROTATION: ABORT TAKE OFF

- 1. Throttle Lever
- 2. Rudder
- 3. Brakes

BOTH IDLE Keep heading control As required

BOTH OFF

OFF

OFF

When safely stopped:

- 4. Failed Engine Ignition
- 5. Failed Engine Field
- 6. Failed Engine Electrical fuel pump

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

*V*_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. Operating engine Throttle Lever
- 2. Operating engine Propeller Lever
- 3. Heading

WARNING

- 4. Attitude
- 5. Inoperative engine Propeller Lever
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps

FULL POWER

FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0•

COSTRUZIONA ARCONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 38

At safe altitude

- 9. <u>Inoperative engine</u>
- 10. Operative engine Electrical fuel pump Check ON
- 11. Operating engine
- 12. Operating engine Fuel Selector

Confirm and SECURE Check ON Check engine instruments Check correct feeding (crossfeed if needed)

If engine restart is recommended:

13. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 13. Land as soon as possible
- 14. One engine inoperative landing procedure. *see Para. 6.6*

Following:

- mechanical engine seizure;
- fire;

- major propeller damage

engine restart is not recommended.

TECNAM P2006T - Aircraft Flight Manual Page S3 - 39

6.4 ENGINE FAILURE DURING CLIMB

- 1. Autopilot
- 2. Heading
- 3. Attitude

OFF

Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS

- 4. Operating engine Throttle Lever
- 5. Operating engine Propeller Lever
- 6. Operative engine Electrical fuel pump
- 7. <u>Inoperative engine Propeller Lever</u>
- 8. <u>Inoperative engine</u>

FULL THROTTLE FULL FORWARD Check ON FEATHER Confirm and SECURE

If engine restart is possible:

9. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

If engine restart is unsuccessful or it is not recommended:

- 9. Land as soon as possible
- 10. One engine inoperative landing procedure.

see Para. 6.6

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 40

6.5 ENGINE FAILURE IN FLIGHT

1.	Autopilot	OFF
2.	Heading	Keep control using rudder and ailerons
3.	Attitude	Adjust as appropriate to keep airspeed over 62 KIAS

4. Operating engine

5. Operative engine Electrical fuel pump

6. Operating engine Fuel Selector

Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

7. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 8. Land as soon as possible
- 9. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 41

6.6 ONE ENGINE INOPERATIVE LANDING

Thoroughly evaluate residual Single Engine Go-Around capabilities and expected climb gradient should a Missed Approach / balked landing be executed.

Refer to Section 5, Para. Single engine go around/Balked landing/climb and Para. 13 and 14- One-engine Rate of Climb at V_{YSE} and V_{XSE}

Autopilot must be kept OFF

- 1. Seat belts
- 2. Landing lights
- 3. Operating engine Fuel Selector
- 4. <u>Inoperative engine</u> Propeller Lever
- 5. <u>Inoperative engine</u>
- 6. Operative engine Electrical fuel pump

When on final leg:

- 7. Flap
- 8. Landing gear
- 9. Approach Airspeed
- 10. Touchdown speed

Tightly fastened As required Check correct feeding/crossfeed if needed CHECK FEATHER CHECK SECURED mp ON

T/O Select DOWN and check three green lights on V_{YSE} 70 KIAS

Section 3 – Emergency procedures ONE ENGINE INOPERATIVE PROCEDURES

COSTRUZION ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 42

7 LANDING GEAR SYSTEM FAILURES

7.1 EMERGENCY LANDING GEAR EXTENSION

Landing gear extension failure is identified by means of the green lights not illuminated: relevant gear leg may not be fully extended and/or locked.

Light bulb operating status can be verified by pressing the LDG push-to-test button. Additionally, the red light TRANS indicates that one or more legs are moving and the PUMP ON amber light on the annunciator panel indicates the hydraulic gear pump is operating.

- 1. Airspeed
- 2. Landing gear control lever
- 3. Emergency gear extension access door

Land as soon as practical

4. RH control lever

NOTE

5. Wait at least 20 seconds

below applicable VLO/VLE *DOWN REMOVE ROTATE* 90° counterclockwise

Main Landing Gear legs green lights may be turned on, thus indicating effective main gear legs blocked in down position by mere effect of gravity force.

6. LH control lever

7.

ROTATE 180° counterclockwise

PULL TO OPEN PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS MAX 93KIAS EMERGENCY ON

The emergency landing gear extension operation takes about 20- sec.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 43

7.2 COMPLETE GEAR UP OR NOSE GEAR UP LANDING

The following procedure applies if Nose Landing Gear is not extended and locked even after emergency extension procedure.

A Nose Landing Gear up leg not down and locked might lead to a hazardous situation, especially on uneven runways.

WARNING

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a complete Landing Gear up or a Nose Landing Gear up position is reported:

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Before ground contact:

- 6. LH and RH Fuel Selector
- 7. LH and RH Electrical fuel pump
- 8. Ignitions

On touch down:

- 9. Landing attitude
- 10. Touchdown speed
- 11. Aircraft nose

After aircraft stops:

- 12. FIELD LH and RH
- 13. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

Tightly fastened UP CHECK OFF plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF OFF

14. Aircraft Evacuation

WARNING

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

carry out if necessary

7.3 PARTIAL MAIN LG EXTENSION

The following procedure applies if one or both Main Landing Gear legs are not completely extended and locked even after emergency extension procedure.

A partial gear landing (RH and/or LH leg not down and locked) might turn into a hazardous situation, especially on uneven runways.

If possible try to obtain a symmetric gear extension (e.g. by trying further landing gear retraction) in order to avoid swerving after touchdown. A gear up landing is generally considered safer.

If landing gear position is not known, perform a tower fly-by at safe speed and altitude to have confirmation about its situation.

If possible coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

Preparation

- 1. Reduce fuel load if time and conditions permit
- 2. Crew and passengers safety belts
- 3. Landing gear control lever
- 4. Green lights and TRANS light
- 5. Flap setting

Tightly fastened UP CHECK OFF plan approach with Flap Land

If partially extended landing gear is confirmed:

Before ground contact:

6.	LH and RH Fuel Selector	BOTH OFF
7.	LH and RH Electrical fuel pump	BOTH OFF
8.	Ignitions	ALL OFF

On touch down:

9.	Align for approach	on the runway centreline
10.	Touchdown speed	as low as 50 KIAS
11.	Touchdown	on the extended gear only
12.	Heading and direction	maintain applying appropriate aileron and
		rudder/steering control
13.	Retracted leg	keep off the ground as long as possible

Section 3 – Emergency procedures LANDING GEAR SYSTEM FAILURES

G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302

COSTRUZIONI ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 46

After aircraft stops:

- 14. FIELD LH and RH
- 15. MASTER SWITCH

BOTH OFF OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

16. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

7.4 FAILED RETRACTION

- 1. Airspeed
- 2. Landing gear control lever

A Landing Gear lever recycle (further retraction attempt) may result in a final partial Landing Gear Extension, which may then compromise safe landing aircraft capability.

3. Landing Gear lights

Check

DOWN

Keep below applicable VLO/VLE

Keep below applicable VLO/VLE

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

7.5 UNINTENTIONAL LANDING GEAR EXTENSION

An unwanted landing gear extension, with at least one leg moving downward, may be caused by hydraulic fluid loss and it is signaled by

DOWN

Check

- <u>significant aerodynamic noise increase;</u>
- *light and counteractable nose down pitch moment;*
- <u>red TRANS light turned on.</u>
- 1. Airspeed
- 2. Landing gear control lever
- 3. Landing Gear lights

If a safe landing configuration is obtained (3 greens)

4. Land normally

If a safe landing gear configuration is not obtained:

- 4. Emergency LG extension procedure *Apply (See Para. 7.1)*
- 5. Land as soon as practical

COSTRUZIONALARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 48

INTENTIONALLY LEFT BLANK

G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 49

8 SMOKE AND FIRE OCCURRENCE

WARNING

	8.1	ENGINE FIRE ON THE GROUND	
1.	Fuel S	electors	BOTH OFF
2.	Ignitio	ns	ALL OFF
3.	Electr	ical fuel pumps	BOTH OFF
4.	Cabin	heat and defrost	OFF
5.	MAST	TER SWITCH	OFF
6.	Parkir	ng Brake	ENGAGED
7.		ft Evacuation	carry out immediately
	WARNIN	or passenger doors are block	ergency exit to escape in case pilot ked, watch for engine hot parts, fuel, Leave aircraft in upwind direction.

8.2 **ENGINE FIRE DURING TAKEOFF RUN BEFORE ROTATION: ABORT TAKE OFF Throttle Lever BOTH IDLE** 1. Rudder *Keep heading control* 2. **Brakes** 3. As required With aircraft under control **Fuel Selector BOTH OFF** 4. 5. Ignitions ALL OFF **Electrical fuel pump BOTH OFF** 6. Cabin heat and defrost **OFF** 7. 8. **MASTER SWITCH OFF Parking Brake** 9. ENGAGED 10. Aircraft Evacuation carry out immediately

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

WARNING

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

 V_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. **Operating engine Throttle Lever** FULL POWER
- Operating engine Propeller Lever FULL FORWARI
 Heading Keep control using
- 4. Attitude
- 4. Attitude
- 5. <u>Fire affected engine</u> Propeller Lever *FEATHER*
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps

FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0•

COSTRUZIONI ARGUNAUTICHE P2006T - Aircraft Flight Manual Page S3 - 51

At safe altitude

9.	Cabin heat and defrost	BOTH OFF
10.	Fire affected engine Fuel Selector	Confirm and OFF
11.	Fire affected engine Ignitions	Confirm and BOTH OFF
12.	Fire affected engine Electrical fuel pump	Confirm and OFF
13.	Fire affected engine FIELD	OFF
14.	Land as soon as possible applying one en	gine inoperative landing procedure.
	See Para. 6.6	

COSTRUZIONIA ARONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 52

8.3 ENGINE FIRE IN FLIGHT

- 1. Cabin heat and defrost
- 2. Autopilot
- 3. <u>Fire affected engine</u> Fuel Selector
- 4. Fire affected engine Ignition
- 5. <u>Fire affected engine</u> Throttle Lever
- 6. <u>Fire affected engine</u> Propeller Lever
- 7. Fire affected engine Electrical fuel pump
- 8. Heading
- 9. Attitude
- 10. Fire affected engine Field
- 11. Cabin ventilation

BOTH OFF OFF Confirm and OFF Confirm and BOTH OFF Confirm and FULL FORWARD Confirm and FEATHER OFF Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS OFF OPEN

12. **Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND

- 1. MASTER SWITCH
- 2. Cabin heat and defrost
- 3. Throttle Lever
- 4. Ignitions
- 5. Fuel Selector
- 6. Parking Brake
- 7. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

OFF

OFF

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

P2006T - Aircraft Flight Manual Pag

Page S3 - 53

Cabin ventilation	OPEN
2. Emergency light	ON
3. Standby attitude indicator swit	ich ON
4. Gain VMC conditions as soon a	as possible

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

6. FIELD LH and RH

7. AVIONICS LH and RH

8. CROSS BUS LH and RH

A fully charged battery can supply electrical power for at least 30 minutes.

If faulty source is found:

9. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on. Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

10. MASTER SWITCH

OFF

OFF

OFF

BOTH OFF

11. Land as soon as possible

COSTRUCTIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 54

When on ground:

12. Aircraft Evacuation

carry out as necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

COSTRUZIONALAERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 55

UNINTENT	IONAL SPIN RE	COVERY
		not been demonstrated since certifica- ot required it for this aircraft category.
A	Intentional spin is j	forbidden.
	Stall with one engin	ne inoperative is forbidden.
WARNING		tional spin occur, the classic recovery ned as being the best action to under-
1. Both eng	gines throttles	idle
2. Flight C		centralize
3. Rudder		fully against rotation until it stops

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 56

10 LANDING EMERGENCIES

10.1 LANDING WITHOUT ENGINE POWER

In case of double engine failure both propellers should be feathered to achieve maximum efficiency. Best glide speed is attained with flap UP and equals V_Y for current aircraft mass and air density altitude. Refer to Section 5, Para. "Enroute Rate of Climb".

Normal landing gear extension requires MASTER switch ON, an efficient battery and takes around 20 seconds.

LG selection should be appropriately anticipated when sure on final.

Flap can be set to T/O or LAND when sure on final to reduce landing ground roll on short field.

Touchdown speed can be as low as 50 kt with flap down.

UP

Select

1. Airspeed

MTOW 1180kg	MTOW 1230 kg
$V_Y = 83 KIAS$	$V_Y = 84 KIAS$

2. Flaps

3. Emergency landing field

Emergency landing strip should be chosen considering surface condition, length and obstacles. Wind can be guessed by smoke plumes direction and tree tops or grass bending. Select touchdown direction according to the furrows of a plowed field, not across.

FASTEN and tighten

Set when landing is assured

DOWN when landing is assured

- 4. Safety belts
- 5. Flaps
- 6. Landing gear control lever

To reduce landing gear extension time, evaluate use of emergency control system which requires about 12 sec.

G1000 NXi, Increased MTOW, Increased VLE/VLO and MD302

Before touch down

- 7. Fuel Selector
- 8. Electrical fuel pump
- 9. Ignitions
- 10. MASTER SWITCH

BOTH OFF BOTH OFF ALL OFF OFF

When stopped

11. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction. P2006T - Aircraft Flight Manual Page S3 - 58

10.2 LANDING WITH NOSE LANDING GEAR TIRE DEFLATED

If possible, as a nose landing gear flat tire condition is known, coor- dinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If Nose Landing Gear flat tire is confirmed:

Preparation

- Crew and passengers safety belts 1.
- If time permits 2.
- Flap setting 3.

Before ground contact:

- 4. **Fuel Selector**
- Electrical fuel pump 5.
- Ignitions 6.

On touch down:

- Landing attitude 7.
- Touchdown speed 8.
- Aircraft nose 9.

After aircraft stops:

10. FIELD LH and RH

11. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

12. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

Tightly fastened Burn fuel to lower landing weight plan approach with Flap Land

BOTH OFF BOTH OFF ALL OFF

slight nose-up and wings levelled, as low as 50 KIAS with flap gently lower as speed bleeds off

BOTH OFF **OFF**

COSTRUZION AREONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 59

10.3 LANDING WITH A KNOWN MAIN LANDING GEAR TIRE DEFLATED

An asymmetrical landing gear tire condition (RH and/or LH tires deflated) might turn into a hazardous situation, especially on uneven runways.

If possible, as a landing gear tires condition is known, coordinate fire brigade intervention along runway and report number of persons on board and remaining fuel type and quantity.

If a main Landing Gear flat tire is confirmed:

Tightly fastened

ALL OFF

BOTH OFF

BOTH OFF

Preparation

- 1. Crew and passengers safety belts
- 2. Flap setting

Before ground contact:

- 3. Ignitions
- 4. LH and RH Fuel Selector
- 5. LH and RH Electrical fuel pump

On touch down:

- 6. Align for approach
- 7. Touchdown speed
- 8. Touchdown
- 9. Heading and direction
- 10. Flattened tire

on the runway centreline as low as 50 KIAS on the good tire gear only maintain applying appropriate aileron and rudder/steering control keep off the ground as long as possible

plan approach with Flap Land

After aircraft stops (or if runway departure is imminent):

- 11. FIELD LH and RH
- 12. MASTER SWITCH

Master switch to OFF impairs radio communication and outside aircraft lighting.

BOTH OFF

OFF

13. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

4th Edition, Rev. 0

Section 3 – Emergency procedures LANDING EMERGENCIES COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 60

10.4 LANDING WITHOUT BRAKES

If possible, select an airport with suitable runway length. Otherwise, evaluate the possibility to perform a gear up landing (refer to procedure reported on Para. 7.2). In the latter case consider the increasing hazard of an uneven pavement.

1. Safety belts

FASTEN

After touch down if runway is deemed insufficient to decelerate:

2. Fuel Selector	BOTH OFF
3. Electrical fuel pumps	BOTH OFF
4. Ignitions	ALL OFF
5. FIELD LH and RH	BOTH OFF
6. MASTER SWITCH	OFF

Master switch to OFF impairs radio communication and outside aircraft lighting.

Before end of runway or if runway departure is imminent:

1. Landing gear control lever

UP

After aircraft stops:

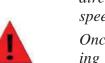
2. Aircraft Evacuation

carry out if necessary

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction. COSTRUZIONI A ERONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 61

11 AIRCRAFT EVACUATION

Leave the aircraft when engines are fully stopped. Watch for engine hot parts and fuel, hydraulic fluid or oil spills when using fuselage doors. If fuselage doors are unserviceable escape through the ditching emergency exit


In case of engine fire escape from opposite or upwind aircraft side.

Verify (if not yet performed):

1.	Fuel Selectors	BOTH
2.	Ignitions	OFF
3.	Electrical fuel pumps	ALL OFF
4.	MASTER SWITCH	BOTH
5.	Parking Brake	OFF OFF
6.	Leave the aircraft using emergency exits	

COSTRUZIONA ARRONAUTICHE P2006T - Aircraft Flight Manual Page S3 - 62

12 DITCHING

Contact with water shall happen with aircraft longitudinal axis and direction of motion parallel to the wave at the minimum possible speed. Keep the nose up as long as possible.

Once in the water, the aircraft shall be evacuated through the ditching emergency exit, if available put life vest on and set dinghy out first. Inflate them only outside the aircraft.

If available, try to approach any existing ship in the vicinity in order to be rapidly located and rescued right after ditching.

UP

FULL

- 1. Landing gear
- 2. Safety belts

WARNING

3. Flaps

Before water impact

- 4. Fuel Selector
- 5. Electrical fuel pump
- 6. Ignitions
- 7. MASTER SWITCH
- 8. FIELD LH and RH
- 9. Impact speed

BOTH OFF BOTH OFF ALL OFF OFF BOTH OFF 50 KIAS

Tighten and fastened

Aircraft evacuation

- 10. Emergency exit handle
- 11. Latch door
- 12. Life vests
- 13. Evacuate the aircraft

rotate clockwise push outward don Supplement G19: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Supplement G19 Section 4 – NORMAL PROCEDURES replaces Basic AFM Section 4 as a whole

4th Edition, Rev. 0

Section 9 - Supplements AFMS G19 – G1000 NXI, Increased MTOW, Increased VLE/VLO and MD302 INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements AFMS G19 – G1000 NXI, Increased MTOW, Increased VLE/VLO and MD302 AIRSPEEDS.....

Z .	
2.2.	Normal operations7
2.3.	Single engine training
3.	NORMAL PROCEDURES CHECKLIST
3.1	Recommendations for cold weather operations
3.2	Pre-flight check – aircraft walk-around11
3.3	Cockpit inspections 17
3.4	Engine starting18
3.5	Before taxiing 20
3.6	Taxiing
3.7	Prior to takeoff
3.8	Line-up
3.9	Takeoff and climb 23
3.10	Cruise
3.11	Turbulent air operation24
3.12	Descent and approach25
3.13	Before landing
3.14	Balked landing/missed approach
3.15	After landing
3.16	Parking/shut down
3.17	Postflight checks
4.	ADDITIONAL GUIDANCE FOR RNAV 29
4.1.	Approach Applications
4.2.	PBN (RNAV & RNP) Operational Eligibility
5.	GROUND TOWING, PARKING AND MOORING
5.1.	Towing
5.2.	Parking
5.3.	Mooring

INDEX

SECTION 4 – NORMAL PROCEDURES

1. 1.1.

2

Page S4 - 1

7

INTENTIONALLY LEFT BLANK

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

1. INTRODUCTION

Section 4 describes checklists and recommended procedures for the conduct of normal operations for *P2006T* aircraft.

1.1. NORMAL OPS GENERAL RECOMMENDATIONS

The following points should be always brought to attention to pilot/instructor/operator when operating a Tecnam aircraft equipped with variable pitch propeller:

1. Propeller governor ground check.

As prescribed by the propeller/governor manufacturer, a drop of 400/500 propeller RPM should be produced during this check. Its aim is to confirm the governor efficiency, not its complete feathering function.

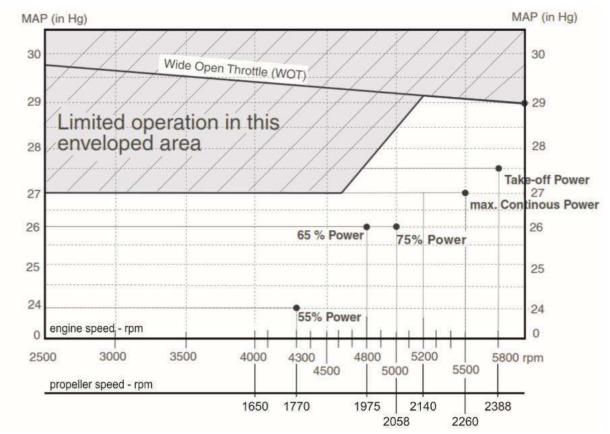
Especially during the first cycle of propeller lever pulling, the governor tendency is to respond to the input with consistent delay, causing the pilot to continue moving back the propeller lever until an abrupt RPM change is observed. This causes an excessive drop in propeller speed that may reach up to 800 RPM in some cases and, consequently, a drop of up to 2000 engine shaft RPM. The long term result is a major wear of engine gearbox, bushings and pistons. In some cases, it may also result in detonation.

In order to avoid these long term adverse effects, the governor ground check should be performed by slowly and gently pulling the propeller lever. The purging cycle should be repeated 3 times, making sure that the governor closely and firmly controls the rpm.

The following recommendations have to be followed during the test:

- propeller speed drops shall be of 400/500 propeller RPM
- the cycle shall be repeated 3 times
- the pilot shall be ready to push the propeller lever if a drop of >500 RPM is recorded

2. Power changes.


When power setting changes are required in any flight condition, remember the following correct procedure:

□ □ Power increase = FIRST Prop THEN Map

□ □ Power reduction = FIRST Map THEN Prop

P2006T - Aircraft Flight Manual

Useful guideline chart that could be used for best propeller/manifold combination is following reported:

3. Suitable Fuels.

Tecnam remember operators to fill the aircraft with approved and suitable fuels. Use of not approved/unknown fuels may cause damages to the engine.

ONLY USE APPROVED FUELS

For details refer to Section 2 of this manual (or applicable Supplement) and latest issue of Rotax SI-912-016

P2006T - Aircraft Flight Manual

G1000 NXi system use

For safety reasons, G1000 NXi operational procedures must be learned on the ground.

Document Garmin G1000 NXi Pilot's Guide for Tecnam P2006T (P/N 190-02286-00) – last issue, reports detailed instructions to operate the system in subject. Make always reference to the above mentioned document.

Garmin G1000 NXi Pilot's Guide for Tecnam P2006T (P/N 190-02286-00) – last issue - must be carried onboard the airplane at all times.

To reduce the risk of unsafe operation, carefully review and understand all aspects of the G1000 NXi Pilot's Guide (P/N 190-02286-00) documentation at the last issue and the AFM for the aircraft. Thoroughly practice basic operation prior to actual use. During flight operations, carefully compare indications from the G1000 NXi to all available navigation sources, including the information from other NAVAIDs, visual sightings, charts, etc. For safety purposes, always resolve any discrepancies before continuing navigation.

Do not use basemap (land and water data) information for primary navigation. Basemap data is intended only to supplement other approved navigation data sources and should be considered as an aid to enhance situational awareness. Do not use outdated database information. Databases used in the G1000 NXi system must be updated regularly in order to ensure that the information remains current. Pilots using any outdated database do so entirely at their own risk. Reference "Garmin G1000 NXi Pilot's Guide for the Tecnam P2006T (P/N 190-02286-00)", last issue, Appendix B concerning SD card use and databases.

For safety reasons, G1000 NXi operational procedures must be learned on the ground.

Because of variation in the earth's magnetic field, operating the G1000 NXi within the following areas could result in loss of reliable attitude and heading indications.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

North of 72° North latitude at all longitudes; South of 70° South latitude at all longitudes; North of 65° North latitude between longitude 75° W and 120° W. (Northern Canada); North of 70° North latitude between longitude 70° W and 128° W. (Northern Canada); North of 70° North latitude between longitude 85° E and 114° E. (Northern Russia); South of 55° South latitude between longitude 120° E and 165° E. (Region south of Australia and New Zealand).

The altitude calculated by G1000 NXi GPS receivers is geometric height above Mean Sea Level and could vary significantly from the altitude displayed by pressure altimeters, such as the GDC 72 Air Data Computer, or other altimeters in aircraft. GPS altitude should never be used for vertical navigation. Always use pressure altitude displayed by the G1000 NXi PFD or other pressure altimeters in aircraft.

NOTE

If the pilot profile is changed during the flight, the HSI could not indicate the correct LOC or VOR indication until the pilot manually tunes the active frequency. Make sure that the displayed indication on the HSI indicator is consistent with the selected frequency.

NOTE

The data contained in the terrain and obstacle databases comes from government agencies. Garmin accurately processes and cross-validates the data, but cannot guarantee the accuracy and completeness of the data. Reference "Garmin G1000 NXi Pilot's Guide for the Tecnam P2006T" (P/N 190-02286-00), last issue, Appendix B concerning SD card use and databases.

NOTE

Use of polarized eyewear may cause the flight displays to appear dim or blank.

MD302 system use

"The detailed description, operation and functionalities of MD302 Stand By Attitude Module are provided on MD302 Stand-By Attitude Module Pilot's Guide" document P/N 9017846 rev.D, which is to be considered to be attached to this AFM and kept onboard the aircraft.

EXTECNAM P2006T - Aircraft Flight Manual

2. AIRSPEEDS

2.1. NORMAL OPERATIONS

The following airspeeds are those which are significant for normal operations, with reference to both MTOW: 1180 kg and 1230 kg (if Supplement G10 - Increased MTOW @1230 KG - is applicable).

		MTOW	
	FLAPS	1180kg	1230 kg
Rotation Speed (in takeoff, V_R)	T/O	64 KIAS	65 KIAS
Best Angle-of-Climb Speed (V_X)	0°	73 KIAS	72 KIAS
Best Rate-of-Climb speed (V_Y)	0°	80 KIAS	84 KIAS
Approach speed	T/O	90 KIAS	90 KIAS
Final Approach Speed	FULL	70 KIAS	71 KIAS
Manoeuvring speed (V_A)	0°	118 KIAS	122 KIAS
Never Exceed Speed (V _{NE})	0°	167 KIAS	171 KIAS

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

2.2. SINGLE ENGINE TRAINING

 V_{SSE} is a speed selected as training aid for pilots in the handling of multi-engine aircraft. It is the minimum speed for intentionally rendering on engine inoperative in flight. This minimum speed provides the margin the manufacturer recommends for us when intentionally performing engine inoperative maneuvers during training. Shutting down an engine for training shall not become a habit; for safety purpose, and in order to optimise training, engine shutdown to perform OEI shall be executed only when necessary and required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or similar).

A simulated feather condition is obtained with propeller lever full forward and throttle lever set at 13.5 in Hg MAP at 70-90 KIAS and 2000-4000 ft (density altitude).

Recommended safe simulated OEI speed (V_{SSE})
--

Keep speed above V_{SSE} for simulated OEI training operations.

In normal operations, shutting down an engine for training shall not become a habit, in particular for safety reasons and in order to optimise training; engine shutdown to perform OEI shall be executed only when required by regulations (e.g. during flight check, skill tests or demonstration as per 14CFR Part61 or equivalent rule).

The continuous operation of engine securing for training may indeed cause long term damages to the engine itself due to the high load coming from propeller (which is in feathering angle during the engine re-starting). **EXTECNAM** P2006T - Aircraft Flight Manual

3. NORMAL PROCEDURES CHECKLIST

3.1 RECOMMENDATIONS FOR COLD WEATHER OPERATIONS

Engine cold weather operation

Refer to Rotax 912 Series Operators Manual, last issue, providing instructions for operating media (lubricant and coolant specifications) to be used in cold weather operation.

Parking

When the airplane is parked in cold weather conditions and it is expected to be soaked at temperatures below freezing, some precautions need to be taken.

Clear snow, slush, and ice in the parking area, or at least clear the area around the tires to prevent them from freezing to the ground. Apply plugs on Pitot and static ports.

The exposed airframe parts should be protected, especially the engines, the wheels, the blades and the gears against the snow or ice accumulation. Water and other freezable liquids should be removed from the airplane.

Standing water that could freeze should be removed from critical parts, as flaps and ailerons hinges, trim tabs hinges, drain points, LG doors, cabin doors etc.

With an ambient temperature of below -20° C, remove battery and store in a warm dry place; additionally in order to prevent a heavy discharge and to increase the battery life time, it is recommended to use an external power source for engine starting at temperatures lower than -15° C.

When wheel brakes come in contact with ice, slush, or snow with freezing conditions, the brake disk may freeze: park the aircraft with parking brake control knob in OFF position and ensure the aircraft is properly chocked and moored.

In any case, when the probability of ice, snow, or heavy frost is forecast, the use of a hangar is strongly recommended.

An external inspection of the aircraft is performed before each flight, as prescribed on Section 3.1.

ECONTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

For cold weather operations, the crew must focus on the check of following parts of airplane (free of snow/ice/standing water).

- control surfaces
- fuselage
- wings
- vertical and horizontal stabilator
- stall warning switch
- engine inlets
- engines draining points
- propeller blades
- LG doors
- Pitot, and static ports
- fuel tank vents

Tires show low pressure in cold weather: the required adjustments to inflation pressure should be performed on tires cooled to ambient temperature.

If the crew detects ice, anti icing products are not allowed. To remove ice, tow the aircraft in the hangar and operate with a soft brush or a humid cloth.

Removal of snow/ice accumulations is necessary prior to take-off because they will seriously affect airplane performance. Aircraft with ice/snow accumulation is not cleared for flight.

If the aircraft must be operated in cold weather conditions within the range -25° C to -5° C, it is suggested to perform following procedure in order to speed up the engine warm-up:

- Tow the airplane in a warm hangar (warmer than -5°C);
- Let airplane temperature stabilize;
- Check pressure in hydraulic system, recharge if necessary;
- Heat the cabin to a suitable value to avoid windshield frost in flight; an electrical fan heater may be used inside the cabin;
- Tow airplane outside and perform engine starting as soon as possible.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

3.2 PRE-FLIGHT CHECK – AIRCRAFT WALK-AROUND

To perform the aircraft walk-around, carry out the checklists according to the pattern shown in Figure 4-1.

NOTE

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Visual inspection is defined as follows: check for defects, cracks, delamination, excessive play, unsafe or improper installation as well as for general condition, presence of foreign objects, slippage markers etc. For control surfaces, visual inspection also involves additional check for freedom of movement. Always check the ground in the area of the aircraft for evidence of fuel, oil or operating fluids leakages.

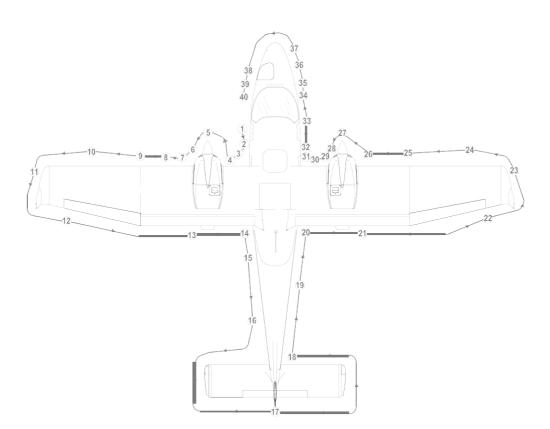


Figure 4.1

TECNAM P2006T - Aircraft Flight Manual

1.	Pilot door and cabin	Check door for integrity. Turn ON the Master Switch and check Stall Warning switch for operation and con- dition; check lighting of Landing/Taxi/Nav/Strobe lights, then turn OFF the Master Switch.
2.	Left main landing gear	Check fuselage skin status, tire status (cuts, bruises, cracks and excessive wear), slippage markers integrity, gear structure and shock absorber, hoses, gear door at- tachments and gear micro-switches. There should be no sign of hydraulic fluid leakage.
3.	Wheel chock	Remove if employed
4.	Propeller and spinner	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.
5.	Left engine nacelle	Perform following inspections:
		 a) Check the surface conditions. b) Nacelle inlets and exhausts openings must be free of obstructions. If inlet and outlet plugs are installed, they should be removed. c) Check radiators. There should be no indication of leakage of fluid and they have to be free of obstructions. d) Only before the first flight of a day: (1) Verify coolant level in the expansion tank, replenish as required up to top (level must be at least 2/3 of the expansion tank). (2) Verify coolant level in the overflow bottle through the slot under the nacelle: level must be between min. and max. mark. Replenish if required removing the upper cowling; after that, install upper cowling checking for interferences with radiators (3) Turn the propeller by hand to and fro, feeling the free rotation of 15° or 30° before the crankshaft starts to rotate. If the propeller cally no friction at all further investigation is necessary. Turn propeller by hand in direction of engine rotation several times and observe engine for odd noises or excessive resistance and normal compression.

COSTRUZIONI AERONAUTICHE	P2006T - Aircraft Flight Manual	Page S4 - 13

		 e) Check oil level and replenish as required. Prior to oil check, switch off both ignitions circuits and turn the propeller by hand in direction of engine rotation several times to pump oil from the engine into the oil tank. This process is finished when air is returning back to the oil tank and can be noticed by a murmur from the open oil tank. Prior to long flights oil should be added so that the oil level reaches the "max" mark. f) Drain off Gascolator for water and sediment (drain until no water comes off). Then make sure drain valve is closed. g) Check drainage hoses clamps h) Verify all parts are fixed or locked. i) Verify all inspection doors are closed.
6.	Air induction system	Check engine air inlet for integrity and correct fixing. The air intake filter must be free of obstructions.
7.	Left fuel tank	Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Ver- ify the tank vent outlet is clear.
8.	Landing and taxi lights	Visual inspection
9.	Left wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall strip.
10.	Left wing top and bottom panels	Visual inspection
11.	Left winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing
12.	Left aileron and balance mass	Visual inspection, remove tie-down devices and control locks if employed.
13.	Left Flap and hinges	Visual inspection
14.	Left static port	Remove protective cap – Visual inspection
15.	Antennas	Check for integrity

COSTRUZIONARROMAUTICHE P2006T - Aircraft Flight Manual Pa

16.	Gear pump, external power and bat- tery compartment	Check emergency landing gear extension system pres- sure (low pressure limit: 20 bar), external power and battery compartments closure.
17.	Horizontal and vertical empennage and tabs. Static discharge wicks.	Check the actuating mechanism of control surfaces and the connection with related tabs. Check wicks for integ- rity. Remove tie-down device if employed.
18.	Stabilator leading edge	Check for integrity
19.	Fuselage top and bottom skin	Visual inspection
20.	Right static port	Remove protective cap – Visual inspection
21.	Right Flap and hinges	Visual inspection
22.	Right aileron and balance weight	Visual inspection, remove tie-down devices and control locks if employed.
23.	Right winglet, nav and strobe lights, static discharge wick	Check for integrity and fixing and lighting
24.	Right wing top and bottom panels	Visual inspection
25.	Right wing leading edge	Visual inspection. Check cabin ventilation inlet and carburettor heating inlet for condition and free of obstruction. Check stall strip.
26.	Right fuel tank	Check that the refuelling port cap is properly secured, then perform the fuel tank sump drainage operating the related valve which, after operation, must be checked closed. Fuel must checked for water and sediment. Ver- ify the tank vent outlet is clear.
27.	Propeller and spinner:	The propeller blades and spinner should be free of cracks, nicks, dents and other defects and should rotate freely. Check fixing and lack of play between blades and hub.
28.	Right engine nacelle	<i>Apply check procedure reported in the walk-around sta- tion 5 and 6.</i>
29.	Passenger door and cabin	Check door for integrity. Check safety belts for integrity and baggage for correct positioning and fastening. Check ditching emergency exit safety lock. Check pas- sengers ventilation ports for proper setting.

COSTRUZIONAREROMAUTICHE P2006T - Aircraft Flight Manual

30.	Right main landing gear	<i>Apply check procedure reported in the walk-around</i> <i>Station 2</i>
31.	Wheel chock	Remove if employed
32.	Bottom fuselage antennas	Check for integrity
33.	Right cabin ram-air inlet	Visual inspection
34.	Right Pitot tube	Remove protective cap and check for any obstruction
35.	Nose landing gear	Check tire status (cuts, bruises, cracks and excessive wear),slippage markers integrity, gear structure and re- traction mechanism, shock absorber and gear doors at- tachments. There should be no sign of hydraulic fluid leakage.
36.	Radome	Check for integrity
37.	Radome access door	Visual inspection
38.	Left Pitot tube	Remove protective cap and check for any obstruction

NOTE

Avoid blowing inside Pitot-tube and inside airspeed indicator system's static ports as this may damage instruments.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S4 - 16

*/5&/5*0/"--:-&'5#-"/,

TECNAM P2006T - Aircraft Flight Manual

Page S4 - 17

3.3 COCKPIT INSPECTIONS

Instruct passengers on how to use safety belts and normal / emergency exits. Passenger embarkation should be done, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges. Do not smoke on board.

Clean the displays using a clean, lint-free cloth and an eyeglass lens cleaner that is specified as safe for anti-reflective coatings. Cleaners containing ammonia will harm the anti-reflective coating.

1.	Parking brake	CHECK ENGAGED
2.	AFM and Garmin Pilot's Guide	CHECK on board
3.	Weight and balance	CHECK if within the limits
4.	Flight controls	Remove seat belt used as lock
5.	PFD and MFD	CHECK clean
6.	Seat	Adjust as required
7.	Seat belt	Fastened
8.	Passenger briefing	Completed
9.	Doors	CLOSED AND LOCKED
10.	Landing gear control lever	CHECK DOWN
11.	Breakers	All IN
12.	MASTER SWITCH	ON
13.	Fuel quantity	CHECK
14.	RH fuel selector	RIGHT
15.	LH fuel selector	LEFT
16.	RH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
17.	RH Electrical Fuel pump	OFF, check pressure decreased at zero
18.	LH Electrical Fuel Pump	ON, check fuel pressure gauge correct operation.
19.	LH Electrical Fuel pump	OFF, check pressure decreased at zero
20.	Strobe light	ON
21.	Landing gear lights	TEST
22.	ELT	CHECK set to ARM
23.	Fire detector	TEST
24.	Engine levers friction	Adjust if required
25.	Flight controls	CHECK free

COSTRUZIONALTICHE P2006T - Aircraft Flight Manual Page S

Page S4 - 18

- 26. Alternate static port
- 27. Cabin heat
- 28. Flaps
- **29.** Pitch trim control
- **30.** Rudder trim control
- **31.** Eng. Starting Battery Voltmeter (if installed)

CHECK closed

CLOSED

Operate control to FULL position. Verify extension. Retract flaps.

Set to neutral position. Set to neutral position.

Check 12 to 14 Volt

3.4 ENGINE STARTING

Avionics switches must be set OFF during engine starting to prevent avionic equipment damage.

1	Start clearance	Obtain if needed
2	CHRONOMETER	START

Right engine starting

1 2	RH Throttle lever RH Carburetor heat	IDLE OFF
3	RH Propeller Lever	FULL FORWARD
4	RH Choke	ON if required

NOTE

Cold engine

Throttles idle (fully closed), chokes fully opened. Soon after starting, advance the throttle to let the propeller reach 800 RPM and slowly close the choke. Keep engine at 900 RPM for warm up period.

Hot engine

Park the aircraft with the nose pointing into wind in order to aid cooling. Keep chokes closed and slowly open the throttles one inch while cranking.

Flooded Engine after engine start failure

Keep chokes closed, open throttle fully and start the engine, then quickly reduce throttles to idle

5	RH Electrical Fuel pump	ON, check advisory light ON and posi-
		tive fuel press build up
6	STROBES	ON
7	RH engine propeller zone	CHECK free
8	RH ignitions switches	BOTH ON

Section 4 – Normal procedures CHECKLIST

EXECTECNAM P2006T - Aircraft Flight Manual

Page S4 - 19

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

9	RH start pushbutton	PUSH
10	RH Field	ON
11	RH engine oil gauge	CHECK if increasing within 10 sec. (max 7 bar in cold operation)
12	RH Throttle lever	Advance to reach 1200 RPM
13	RH Choke	OFF
14	RH Avionics	ON
15	RH Cross bus	ON
16	RH Ammeter	CHECK Amps positive
17	Voltmeter	CHECK 12 to 14 Volt
18	Chronometer	Start

Left engine starting

1	LH Throttle lever	IDLE
2	LH Carburetor heat	OFF
3	LH Propeller Lever	FULL FORWARD
4	LH Choke	ON if required
5	LH Electrical Fuel pump	<i>ON, check advisory light ON and posi-</i> <i>tive fuel press build up</i>
6	LH engine propeller zone	CHECK free
7	LH ignitions switches	BOTH ON

Ensure that the area around engine propeller disc is clear from people and obstacles. Call out for propeller free.

8	LH start pushbutton	PUSH
9	LH Field	ON
10	LH engine oil gauge	CHECK if increasing within 10 sec. (max 7 bar in cold operation)
11	LH Throttle lever	ADVANCE to reach 1200 RPM

EXTECNAM P2006T - Aircraft Flight Manual

Page S4 - 20

- 12 LH Choke
- **13** LH Avionics
- 14 LH Cross bus
- 15 LH Ammeter

OFF ON ON CHECK Amps positive

3.5 BEFORE TAXIING

1 Let the engines warm up to a minimum oil temperature of 50°C at 1200 RPM

2	Nav, Taxi and Landing lights	ON
3	Transponder	Stand-by
4	Passengers and crews seat belts	Fastened
5	Passengers and crews headphones	Set as required

3.6 TAXIING

NOTE

Ensure that the main and passengers' doors warning lights are turned off.

1	LH/RH Fuel Selector	As required
2	LH and RH fuel pressure	Monitor
3	Parking Brake	RELEASE
4	Flight instruments	CHECK
5	Engine instruments	CHECK
6	Altimeter	SET both and crosscheck max difference 150 ft
7	Brakes	TEST

ECTECNAM P2006T - Aircraft Flight Manual I

Page S4 - 21

3.7	P RIOR TO TAKEOFF	
1	Parking Brake	ENGAGED
2	RH Fuel Selector	RIGHT
3		LEFT
4	1	
5	LH and RH Engine para	meters checks:
	• Oil temperature: <i>C</i>	90° -';110°
		(or 50° + 130 ° C, if MOD2006/002 is applied).
	• CHT / CT:	50° -'; 135° / 120° C
	• Oil pressure:	2-5 bar (above 1400 RPM): 0.8 bar (below 1400 RPM)
	• Fuel pressure:	2.2 – 5.8 psi (0.15 - 0.40 bar)
		*2.2 – 7.26 psi (0.15 – 0.50 bar)
	*applicable for fuel pu	mp part no.893110 and no.893114
6	LH and RH Generator li	ghts CHECK BOTH OFF

- 7 LH and RH Propeller Lever
- 8 LH and RH Throttle Lever
- **9** RH Ignitions switches

10 RH Propeller Lever

CHECK BOTH OFF FULL FORWARD 1650 RPM

Set L / R / BOTH (*RPM drop with single* ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either circuits LEFT or *RIGHT cannot overcome 50 RPM*) *GOVERNOR CHECK*

- a) Reduce prop speed to 1200 RPM;
- b) move propeller lever back to full forward position;
- c) repeat a) and b) 3 times;
- *d)* verify that the governor closely and firmly controls the *RPM*;
- *e)* verify that 1650 prop *RPM* are restored with prop lever in full forward position.

Do not cause the propeller speed drop below 1150 RPM in any case.

NOTE

- **12** RH Carburettor heat
- **13** RH engine instruments
- **14** LH Ignitions switches

ON, verify propeller RPM decreasing about 100 RPM OFF CHECK parameters if within green arcs Set L/R/BOTH (RPM drop with single ignition circuit selected must not exceed 130 prop's RPM; maximum RPM difference by use of either circuits LEFT or RIGHT cannot overcome 50 RPM)

Section 4 – Normal procedures 4th Edition, Rev. 1

CHECKLIST

K TECNAM P2006T - Aircraft Flight Manual

Page S4 - 22

GOVERNOR CHECK 15 LH Propeller Lever a) Reduce prop speed to 1200 RPM; b) move propeller lever back to full forward position; c) repeat a) and b) 3 times; d) verify that the governor closely and firmly controls the RPM; e) verify that 1650 prop RPM are restored with prop lever in full forward position. Do not cause the propeller speed drop below 1150 RPM in any case. NOTE LH Carburettor heat 16 ON, verify propeller RPM decreasing about 100 RPM **OFF** 17 LH Carburettor heat LH engine instruments 18 CHECK parameters if within green arcs CHECK consistent with fuel plan 19 LH and RH Fuel quantity indicator 20 Flaps

- 21 Pitch trim and rudder trim
- 22 Flight controls
- 23 Seat belts fastened and doors closed and locked

OFF CHECK parameters if within green arcs CHECK consistent with fuel plan T/O or as required (see Section 5, Take OFF performances) SET neutral position Check free CHECK

3.8 LINE-UP

- **1** Parking Brake
- 2 Annunciator window
- 3 RH Fuel Selector
- 4 LH Fuel Selector
- 5 Pitot heat
- 6 XPDR
- 7 Magnetic compass
- 8 AHRS

RELEASE, check full in CHECK cautions and warnings OFF RIGHT LEFT as required SET ALT CHECK CROSS CHECK

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

Page S4 - 23

3.9 TAKEOFF AND CLIMB

- 1 Landing light
- 2 LH and RH Electrical Fuel pump
- 3 Carburettors heat
- 4 LH and RH Propeller Lever
- 5 LH and RH Throttle Lever
- **6** Engines instruments
- 7 Rotation speed

8	Apply brakes to stop wheel spinning	

- 9 Landing gear control knob
- **10** Landing and taxi lights
- 11 LH and RH Propeller Lever

ON BOTH ON CHECK OFF FULL FORWARD FULL POWER Parameters within green arcs

MTOW 1180kg	MTOW 1230 kg
Vr = 64 KIAS	Vr = 65 KIAS

UP: check green lights and TRANS light turned OFF within about 20" OFF above 10000 ft Set max cont power at safe altitude

CAU-TION

Max take off power must be limited to 5 minutes. Reduce Throttles MAP power before retracting Propeller to 2200 RPM or below.

12 LH and RH Electrical Fuel pump

NOTE

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

BOTH OFF

Noteworthily best climb gradient speed (V_X)flaps UP is lower than best climb speed (V_X)flaps T/O up to 6000 ft (density altitude).Refer to Section 5, "Best climb gradient speed" table. K TECNAM P2006T - Aircraft Flight Manual

4th Edition, Rev. J

3.10 CRUISE

1 LH and RH Propeller Lever

SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

2 Engine parameters check (LH and RH)

• Oil temperature:	90° – 110° C (or 50° - 130 ° C, if MOD2006/002 is applied).
• CHT/CT:	50°-135°/50° - 120° C
• Oil pressure:	2 - 5 bar.
• Fuel pressure:	2.2 – 5.8 psi
	*2.2 – 7.26 psi (0.15 – 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

3 Carburettor heat as needed (*see also instructions addressed on Section 3*.

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed

check as necessary

NOTE

To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.11 **TURBULENT AIR OPERATION**

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

```
Section 4 – Normal procedures
CHECKLIST
```

power above idle and RPM lower than full continuous.

As required

3.12 **DESCENT AND APPROACH**

1 Rear passengers seats

MTOW 1180kg

 $V_{FE} = 119KIAS$

Carburettors heat

2 LH and RH Electrical Fuel pump

LH and RH Propeller Lever

Final Approach Speed

Landing and taxi light

Touchdown speed

On final leg: speed below 93 KIAS

BEFORE LANDING

3 On downwind leg:

MTOW 1230 kg	Flaps T/O
$V_{FE}=122KIAS$	

Speed below applicable VLO/VLE Landing gear control knob - DOWN -Check green lights ON CHECK OFF

FULL FORWARD

BOTH ON

Flaps FULL

MTOW 1180kg	MTOW 1230 kg
$V_{APP} = 70KIAS$	V _{APP} =71KIAS

4th Edition, Rev. 2

Seats set at full aft and lower position

ON 65 KIAS

Propellers As required

NOTE

1

2 Carburettors heat

- 3 Altimeter setting
- 4 Rear passengers seats

QNH set and crosscheck Set at full aft position

In order to control engine cooling and life, it is preferable to descend with

3.13

4

5

6

7

8

9

10

Page S4 - 25

EXTECNAM P2006T - Aircraft Flight Manual

Page S4 - 26

3.14 BALKED LANDING/MISSED APPROACH

1 LH and RH Propeller Lever

LH and RH Throttle Lever

FULL FORWARD FULL POWER

2

Propeller Lever increase to max RPM should be attained before engine Throttle Levers are advanced to max take off power. Max take off power must be limited to 5 minutes.

3	Flaps	Τ/Ο
4	Speed	Keep over 62 KIAS, climb to V_Y or V_X
		as applicable
5	Landing gear	UP as positive climb is achieved
6	Flaps	UP

It is recommended to retract landing gear when a positive climb rate is ensured at the applicable best speed (V_Y or V_X as necessary). It has been demonstrated that best climb rate is always obtained with flaps in UP position: refer to Section 5, "Take off rate of climb" and "Enroute rate of climb" tables.

Noteworthily best climb gradient speed (V_X) flaps UP is lower than best climb speed (V_X) flaps T/O up to 6000 ft (density altitude). Refer to Section 5, "Best climb gradient speed" table.

3.15 AFTER LANDING

- 1 LH and RH Electrical Fuel pump
- 2 Flaps
- **3** Pitot Heat
- 4 Landing light

BOTH OFF 0° OFF OFF when required **EXTECNAM** P2006T - Aircraft Flight Manual

Page S4 - 27

3.16 PARKING/SHUT DOWN

NOTE

It is always suggested to park the aircraft with the nose pointing into wind to improve cooling after shut down.

- **1** Parking brake
- 2 Taxi light
- 3 Engines
- 4 Flaps
- 5 Trims

Engage OFF Allow for cooling down 1 minute at idle power

> Check UP Check neutral

OFF

OFF

OFF

OFF

OFF

NOTE

Ensure the engine is at its lowest possible idle speed before selecting ignitions off.

Turn OFF one at time

- **6** Ignitions switches
- 7 LH and RH AVIONIC BUS
- 8 LH and RH CROSS BUS
- 9 LH/RH Field
- **10** All external lights switches
- 11 Master Switch
- 12 Emg Batt / Emg cockpit light / Emg ADI Switches Check OFF

Before disembarkation verify propellers are fully stopped.

Instruct passengers to fully open pax door (against nacelle stop) and depart alongside aircraft fuselage, avoiding contact with hot / oily parts such as engine exhaust pipes, drainage tubes and wheel brakes, or sharp wing control surfaces edges.

Crew should avoid propeller disc area crossing while proceeding alongside a fully opened pilot's door (up to 110°).

COSTRUZIONAREONAUTICHE P2006T - Aircraft Flight Manual

Page S4 - 28

3.17 POSTFLIGHT CHECKS

- **1** Protective cover for Pitot tubes, stall warning and static *Install* port plugs.
- 2 Lock one control wheel with safety belt.
- 3 Wheel chocks
- 4 Aileron lock
- 5 Pilot and passengers doors.

Place under MLG Place and tighten Close and latch COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

4. ADDITIONAL GUIDANCE FOR RNAV

Experience of RNAV systems, and Flight FMS in general, has identified the pitfalls of waypoint entry error at the receiver as well as inaccuracies and errors in the database itself.

Research and experience have both shown that human error, often the result of a lack of familiarity with the airborne equipment, represents the major hazard in operations using RNAV systems. Therefore, it is imperative that pilots understand their system thoroughly and are able to determine whether it is safe to proceed.

This requires robust procedures, which check for possible errors in the computer database, monitor continued performance of the RNAV systems and enable pilots to identify and avoid not only their own mistakes but also errors in the information presented to them.

Flight planning on RNAV routes should include the following recommendation.

- During the pre-flight planning phase, given a GPS constellation of 23 satellites or less (22 or less for GPS stand-alone equipment that incorporate pressure altitude aiding), the availability of GPS integrity (RAIM) should be confirmed for the intended flight (route and time). This should be obtained from a prediction program either ground-based, or provided as an equipment function, or from an alternative method acceptable to the Authority;
- Where a navigation data base is installed, the data base validity (current AIRAC cycle) should be checked before flight;
- Traditional navigation equipment (e.g. VOR, DME and ADF) should be selected to available aids so as to allow immediate cross-checking or reversion in the event of loss of GPS navigation capability.

1) Pre-flight Planning

During the pre-flight planning phase, the availability of the navigation infrastructure, required for the intended operation, including any non-RNAV contingencies, must be confirmed for the period of intended operation. Availability of the onboard navigation equipment necessary for the route to be flown must be confirmed. The onboard navigation database must be appropriate for the region of intended operation and must include the navigation aids, waypoints, and coded terminal airspace procedures for the departure, arrival and alternate airfields.

Where the responsible airspace authority has specified in the AIP that dual PRNAV systems are required for specific terminal P-RNAV procedure, the availability of dual P-RNAV systems must be confirmed. This typically will apply where procedures are effective below the applicable minimum obstacle clearance altitude or where radar coverage is inadequate for the purposes of supporting P-RNAV. This will also take into account the particular hazards of a terminal area and the feasibility of contingency procedures following loss of P-RNAV capability.

RAIM availability must be confirmed with account taken of the latest information

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

2) <u>Departure</u>

At system initialisation, the flight crew must confirm that the navigation database is current and verify that the aircraft position has been entered correctly. The active flight plan should be checked by comparing the charts, SID or other applicable documents, with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will use a specific navigation aid(s), or to confirm exclusion of a specific navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database

The creation of new waypoints by manual entry into the RNAV system by the flight crew is not permitted as it would invalidate the affected P-RNAV procedure.

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion. This may include the insertion in the flight plan of waypoints loaded from the database.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness, by cross-checks, with conventional navigation aids using the primary display

3) <u>Arrival</u>

Prior to the arrival phase, the flight crew should verify that the correct terminal procedure has been loaded. The active flight plan should be checked by comparing the charts with the map display. This includes confirmation of the waypoint sequence, reasonableness of track angles and distances, any altitude or speed constraints, and, where possible, which waypoints are fly-by and which are fly-over. If required by a procedure, a check will need to be made to confirm that updating will exclude a particular navigation aid. A procedure shall not be used if doubt exists as to the validity of the procedure in the navigation database.

Note: as a minimum, the arrival checks could be a simple inspection of a suitable map display that achieves the objectives of this paragraph.

The creation of new waypoints by manual entry into the RNAV system by the flight crew would invalidate the P-RNAV procedure and is not permitted.

Where the contingency to revert to a conventional arrival procedure is required, the flight crew must make the necessary preparation.

During the procedure and where feasible, flight progress should be monitored for navigational reasonableness by cross-checks with conventional navigation aids using the primary display

Route modifications in the terminal area may take the form of radar headings or 'direct to' clearances and the flight crew must be capable of reacting in a timely fashion.

Although a particular method is not mandated, any published altitude and speed constraints must be observed.

EXTECNAM P2006T - Aircraft Flight Manual

In the event that either the GPS or the EGNOS signal is not available at the destination, by the nature of the system, and its susceptibility to interference, there exists the possibility that it will also be unavailable over a wide area. Therefore, it is probable that the signal will also be unavailable at a nearby diversion aerodrome.

Notwithstanding any normal operational requirements for the identification of an alternate aerodrome, where a RNAV approach is to be flown in conditions where a visual approach will not be possible; pilots should always ensure that either:

- 1) A different type of approach system is available at the destination, not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach, or;
- 2) There is at least one alternate destination within range, where a different type of approach system is available, which is not dependent on GPS data and for which the weather is forecast to be suitable to enable a landing to be made from that approach.

4.1 APPROACH APPLICATIONS

When GPS is not approved for the selected final approach course, the message "NOT APPROVED FOR GPS" is displayed. GPS provides guidance for the approach, but the HIS must be switched to a NAV receiver to fly the final course of the approach

If certain GPS parameters (SBAS, RAIM, etc.) are not available, some published approach procedures for the desired airport may not be displayed in the list of available approaches.

An Approach Procedure (APPR) can be loaded at any airport that has one available, and provides guidance for non-precision and precision approaches to airports with published instrument approach procedures.

Only one approach can be loaded at a time in a flight plan. If an approach is loaded when another approach is already in the active flight plan, the new approach replaces the previous approach. The route is defined by selection of an approach and the transition waypoints.

Whenever an approach is selected, the choice to either "load" or "activate" is given. "Loading" adds the approach to the end of the flight plan without immediately using it for navigation guidance. This allows continued navigation via the intermediate waypoints in the original flight plan, but keeps the procedure available on the Active Flight Plan Page for quick activation when needed. "Activating" also adds the procedure to the end of the flight plan but immediately begins to provide guidance to the first waypoint in the approach.

When selecting an approach, a "GPS" designation to the right of the procedure name indicates the procedure can be flown using the GPS receiver. Some procedures do not have

Section 4 – Normal procedures RNAV

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

this designation, meaning the GPS receiver can be used for supplemental navigation guidance only.

If the GPS receiver cannot be used for primary guidance, the appropriate navigation receiver must be used for the selected approach (e.g., VOR or ILS). The final course segment of ILS approaches, for example, must be flown by tuning the NAV receiver to the proper frequency and selecting that NAV receiver on the CDI

The G1000 SBAS GPS allows for flying LNAV and LPV approach service levels according to the published chart.

A sample of how the active approach service level is annunciated on the HSI is shown in the following table:

HSI Annunciation	Description	Example on HSI
LNAV	RNAV GPS approach using	251°
	published LNAV minima	J J I
LPV	RNAV GPS approach using	
(available only if SBAS available)	published LPV minima	→ CPS LPV 0
		Approach Service Level

Before reaching the IAF, the flight crew should verify that the correct procedure has been loaded into the receiver's route or flight plan. A comparison with the approach chart should be made including the following:

- The waypoint sequence.
- Reasonableness of the tracks and distances of the approach legs, accuracy of the inbound course and mileage of the FAS.
- Verify from the charts, map display or CDU, which waypoints are fly-by and which are fly-over.
- Check any map display to ensure the track lines actually 'fly-over' or 'fly-by' the respective waypoints in the procedure.

By the time the aircraft reaches the IAF the pilot should have completed the above and been cleared for the approach. Also, the approach must have been activated in the receiver at least by this time.

Approach Applications which are classified as RNP Approach (APCH) in accordance with ICAO Doc 9613 Performance Based Navigation (PBN) Manual (and ICAO state Letter SP65/4-10/53) give access to minima (on an instrument approach procedure) designated as:

EXTECNAM P2006T - Aircraft Flight Manual

LNAV (Lateral Navigation)

This is a Non-Precision or 2D Approach with Lateral only navigation guidance provided by GNSS and an Aircraft Based Augmentation System (ABAS). Receiver Autonomous Integrity Monitoring (RAIM) is a form of ABAS. Lateral guidance is linear with accuracy to within ± 0.3 NM parallel to either side of the final approach track.

LPV (Localiser Performance with Vertical Guidance)

This is an Approach Procedure with Vertical Guidance. The Lateral and Vertical guidance is provided by GPS and SBAS. Lateral and vertical guidance are angular with increasing sensitivity as the aircraft progresses down the final approach track; much like an ILS indication. LPV approach and annunciation on HSI is available only is SBAS available.

Before selecting a LPV approach, make sure SBAS is indicated ACTIVE in the GPS status box on AUX-GPS STATUS page on MFD.

If DISABLED highlight the appropriate SBAS SELECTION Box under SBAS softkey under AUX-GPS Status Page on MFD

Should SBAS signal be lost, augmentation is lost. It may be possible to continue with LNAV only but this is reliant on the availability of RAIM.

NOTE: The instrument approach procedures associated with RNP APCH are entitled RNAV (GNSS) to reflect that GNSS is the primary navigation system. With the inherent onboard performance monitoring and alerting provided by GNSS, the navigation specification qualifies as RNP, however these procedures pre-date PBN, so the chart name has remained as RNAV.

Missed approach procedures

Before commencing an RNAV (GNSS) missed approach, a MAP should be possible without reference to GPS derived navigation so that, in the event of a loss of GPS accuracy or loss of integrity during the approach, a safe return to above Minimum Sector Altitude can be made.

This may be possible by dead reckoning (DR) navigation but where this is not possible and the MAP requires reference to terrestrial navigation aids, these must be available, tuned and correctly identified before passing the IAF and remain available throughout the approach.

Reasons for a missed approach are many and if GPS information remains available for the MAP, the pilot must be able to sequence the system correctly past the MAP, in order to follow the published MAP correctly.

Pilots should be fully competent in the necessary selection routines required by their own equipment, in order to transition to the MAP and preserve accurate navigation throughout.

When GPS navigation is NOT available for the MAP, it may be necessary to reset the display function of the HSI/CDI to disengage GPS information and regain VOR/LOC display. Pilots must be fully conversant with navigation display selections in order safely to follow the MAP.

ECOSTRUZIONI AFROMAUTICHE P2006T - Aircraft Flight Manual

Abnormal procedures for approaches

As the aircraft approaches the FAF (LNAV Only, without SBAS), the receiver automatically perform a final RAIM prediction for the approach. The receiver will not enter the approach mode if this RAIM prediction is negative. In this case, the approach should be discontinued.

However, this RAIM check assumes availability of the full constellation and will not take account of scheduled interruptions or failures. This can lead to a successful RAIM prediction at this point when the RAIM function itself is not available.

If RAIM is lost after passing the FAF the equipment should continue to provide navigation, where possible for five minutes, before giving a RAIM loss indication and this should be enough to complete the approach.

Should RAIM detect an out of tolerance situation, a warning will be given and a missed approach should be initiated immediately

The approach should always be discontinued:

- (a) If the receiver fails to engage the correct approach mode or;
- (b) In case of Loss Of Integrity (LOI) monitoring or;
- (c) Whenever the HSI/CDI indication (or GP indication where applicable) exceeds half scale displacement or;
- (d) If a RAIM (or equivalent) warning is activated or;
- (e) If RAIM (or equivalent) function is not available and annunciated before passing the FAF.

4.2 PBN (RNAV & RNP) OPERATIONAL ELIGIBILITY

The Garmin GNSS navigation system as installed in this airplane is approved for navigation using GPS and SBAS (within the coverage of a Satellite Based Augmentation System complying with ICAO Annex 10) for IFR en- route, terminal area, precision and non-precision approach operations.

Both GNSS receivers are required to be operating and receiving usable signals except for routes requiring only one Long Range Navigation sensor.

The G1000 System has been shown to be eligible for:

- B-RNAV (RNAV-5)
- RNAV1 / P-RNAV (RNP-1) Enroute and Terminal navigation
- RNP APCH LNAV (does not include APV BARO-VNAV operation which is not cleared)
- LPV with SBAS

provided that the G1000 is receiving usable navigation information from at least one GPS receiver.

EXTECNAM P2006T - Aircraft Flight Manual

Page S4 - 35

5. GROUND TOWING, PARKING AND MOORING

5.1 Towing

When the a/c is moved on the ground, the Master Switch must be turned ON until the a/c is parked.

To tow the aircraft it is necessary to use a metal stiff bar connected to the nose gear.

Do not turn nose wheel above 20° either side of center: greater steering angles can damage the wheel stop. The tow bar must be removed before engines starting.

5.2 PARKING

General

Under normal weather conditions, the airplane may be parked and headed in a direction that will facilitate servicing without regard to prevailing winds. Ensure that it is sufficiently protected against adverse weather conditions and present no danger to other aircraft.

Procedure

- 1. Position airplane on levelled surface, headed into the prevailing wind, if practical.
- 2. Engage parking brake and install control locks
- 3. Secure pilot control wheel by wrapping the seat belt around it.

Do not engage the parking brakes at low ambient temperature; accumulation of moisture may

the brakes to freeze. In this case use wheel chocks.

In case of long time parking or overnight parking, it is recommended to moor the a/c as shown on Para. 4.3.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

EXTECNAM P2006T - Aircraft Flight Manual

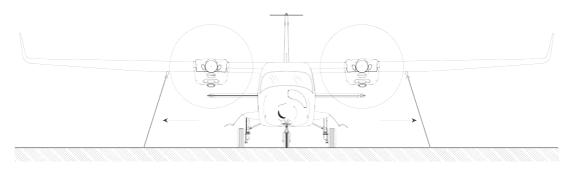
5.3 MOORING

The aircraft is moored to insure its immovability, protection, and security under various weather conditions.

Mooring is strongly recommended when the wind is more than 15 knots and the a/c is completely refuelled.

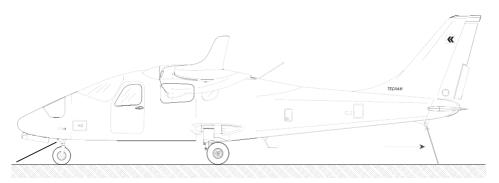
Procedure

- 1. Position airplane on levelled surface and headed into the prevailing wind.
- 2. Center nose wheel, engage parking brake and/or use the wheel chocks.



Do not engage the parking brakes at low ambient temperature; accumulation of moisture may cause the brakes to freeze. In this case use wheel chocks.

- 3. Secure pilot control wheel by wrapping the seat belt around it
- 4. Assure flaps are retracted
- 5. Electrically ground airplane, by connecting ground cable to the engine muffle
- 6. Install control locks and protective plugs.
- 7. Close and lock cabin doors.
- 8. Secure tie-down cables to the nose gear leg (in correspondence of the wheel fork) and to the wings and tail cone tie-down rings at approximately 45 degree with respect to the ground. (Refer to following figures)



Additional preparation for high winds includes tie-down ropes from the main landing gear forks employment.

Mooring – front view

TECNAM P2006T - Aircraft Flight Manual

Mooring - side view

COSTRUZION AFRONAUTICHE P2005T - Aircraft Flight Manual Page S4 - 38

INTENTIONALLY LEFT BLANK

Supplement G19: pages replacement instructions

SECTION 5 - PERFORMANCES

Apply following instruction:

Supplement G19 – PERFORMANCES pages replace basic AFM Section 5 as a whole.

4th Edition, Rev. 0

AFMS G19 – G1000 NXI, Increased MTOW, Increased V_{LE}/V_{LO} and MD302

Section 9 - Supplements

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements AFMS G19 – G1000 NXI, Increased MTOW, Increased V_{LE}/V_{LO} and MD302

COSTRUZIONI AFROMAUTICHE P2006T - Aircraft Flight Manual

Page S5 - 1

SECTION 5 - PERFORMANCES

INDEX

1.	Introduction	1
2.	Use of performances charts	2
3.	Airspeed indicator system calibration	3
4.	ICAO Standard Atmosphere	4
5.	Stall speed	5
6.	Crosswind	6
7.	Takeoff performances	7
8.	Take-off Rate of Climb at V _y	10
9.	Take-off Rate of Climb at V_x	11
10.	Enroute Rate of Climb at V _y	12
11.	Enroute Rate of Climb at V $_{\rm x}$	13
12.	One-Engine Rate of Climb at V _{yse}	14
13.	One-Engine Rate of Climb at V _{xSE}	15
14.	Cruise performances	16
15.	Landing performances	19
16.	Balked landing climb gradient	22
17.	Noise data	22

1. INTRODUCTION

This section provides all necessary data for an accurate and comprehensive planning of flight activity from takeoff to landing.

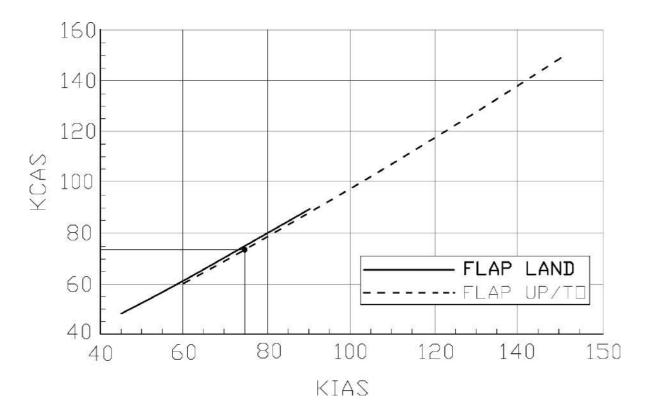
Data reported in graphs and/or in tables were determined using:

- "Flight Test Data" under conditions prescribed by EASA CS-23 regulation
- aircraft and engine in good condition
- average piloting techniques

Each graph or table was determined according to ICAO Standard Atmosphere (ISA - s.l.); evaluations of the impact on performances were carried out by theoretical means for:

airspeed external temperature altitude weight runway type and condition

2. Use of performances charts


Performances data are presented in tabular or graphical form to illustrate the effect of different variables such as altitude, temperature and weight. Given information is sufficient to plan the mission with required precision and safety.

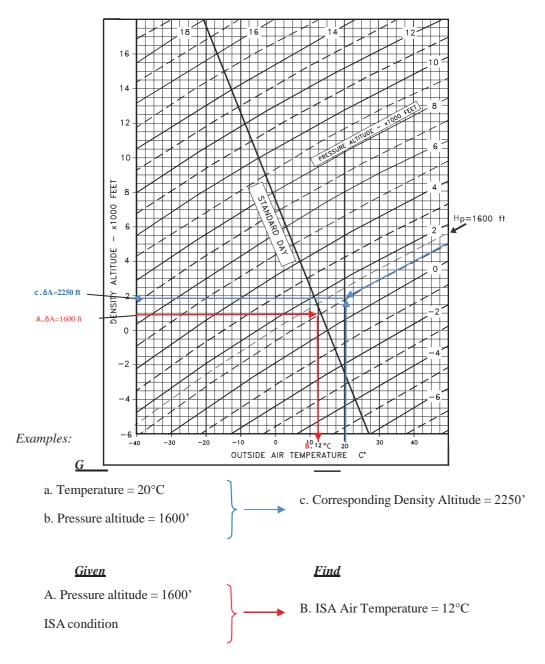
Additional information is provided for each table or graph.

EXECTANA P2006T - Aircraft Flight Manual

3. AIRSPEED INDICATOR SYSTEM CALIBRATION

Graph shows calibrated airspeed V_{CAS} as a function of indicated airspeed V_{IAS} .

Example:


 Given
 Find

 KIAS 75
 KCAS 74

TECNAM P2006T - Aircraft Flight Manual

Page S5 - 4

4. ICAO STANDARD ATMOSPHERE

TECNAM P2006T - Aircraft Flight Manual

Page S5 - 5

5. STALL SPEED

Weight: 1230 kg (2712 lb) Throttle Levers: IDLE Landing Gear: Down

CG: Most Forward (16.5%)

No ground effect

14/	BANK			STALL	Speed		
WEIGHT	ANGLE	FLAPS 0°		FLAPS T/O		FLAPS FULL	
[kg]	[deg]	KIAS	KCAS	KIAS	KCAS	KIAS	KCAS
	0	66	65	59	57	54	55
4000	15	67	66	58	58	55	56
1230	30	71	70	61	61	59	59
(FWD C.G.)	45	79	78	68	68	65	65
	60	95	93	83	81	79	78

NOTE

Altitude loss during conventional stall recovery, as demonstrated during flight tests is approximately 250 ft with banking below 30°.

6. CROSSWIND

Maximum demonstrated crosswind is 17 Kts

=:: Example:

<u>Given</u>

<u>Find</u>

Headwind = 17.5 Kts

Wind direction (with respect to aircraft longitudinal axis) = 30°

Wind speed = 20 Kts

Crosswind = 10 Kts

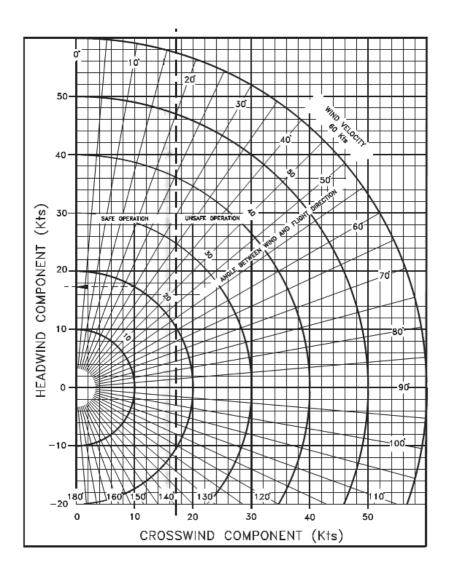


Figure 3 – Crosswind diagram

Section 5 - Performances CROSSWIND

COSTRUZIONI AFROMAUTICHE P2006T - Aircraft Flight Manual

Page S5 - 7

7. TAKEOFF PERFORMANCES

<u>Weight = 1230</u>	<u>kg (2712 lb)</u>						
				Correct	tions		
Flaps: T/O			Headwind:	- 2.5m for ea	ach kt (<i>8 ft/</i>	(kt)	
Speed at Lift-Off = 65 KIAS			Tailwind: + 10m for each kt (33ft/kt)				
Speed Over 50ft Obstacle = 70 KIAS			Paved Run	way: - 6% to	Ground Ro		
Throttle Levers	: Full Forward		Runway slo	pe: + 5% to	Ground Rol	I for each	
Runway: Grass			+1%				
Pressure				Distance [m]			
Altitude			Tempera	ture [°C]		ISA	
[ft]		-25	0	25	50	IJA	
S.L.	Ground Roll	207	263	328	401	301	
J.L.	At 50 ft AGL	271	345	429	525	394	
1000	Ground Roll	231	294	366	447	330	
1000	At 50 ft AGL	303	385	479	586	432	
2000	Ground Roll	258	328	409	500	362	
2000	At 50 ft AGL	338	430	535	654	474	
2000	Ground Roll	289	367	457	559	398	
3000	3000 At 50 ft AGL		480	598	731	521	
4000	Ground Roll	323	411	511	625	438	
4000	At 50 ft AGL	423	537	669	818	573	
5000	Ground Roll	362	460	572	700	481	
5000	At 50 ft AGL	473	602	749	916	630	
6000	Ground Roll	405	515	642	785	530	
6000	At 50 ft AGL	531	675	840	1027	694	
7000	Ground Roll	455	578	720	880	584	
/000	At 50 ft AGL	595	757	942	1152	765	
8000	Ground Roll	511	650	809	989	645	
8000	At 50 ft AGL	669	850	1059	1295	844	
9000	Ground Roll	575	730	909	1112	712	
9000	At 50 ft AGL	752	956	1190	1456	932	
10000	Ground Roll	647	822	1023	1252	786	
10000	At 50 ft AGL	847	1076	1340	1638	1029	

Page S5 - 8

<u>Weight = 1080</u>	<u>) kg (2381 lb)</u>							
			Corrections					
Flaps: T/O			Headwind: - 2.5m for each kt (8 ft/kt)					
Speed at Lift-Off = 65 KIAS Speed Over 50ft Obstacle = 70 KIAS			Tailwind:	+ 10m for ea	ch kt (<i>33ft,</i>	/kt)		
			Paved Run	way: - 6% to	o Ground R	oll		
Throttle Lever	s: Full Forward		Runway slo	ope: + 5% to	Ground R	oll for		
Runway: Gras	s		each +1%					
Pressure				Distance [m]	1			
Altitude			Tempera	ture [°C]		ISA		
[ft]		-25	0	25	50	ISA		
<u> </u>	Ground Roll	148	188	234	286	215		
S.L.	At 50 ft AGL	193	246	306	374	281		
1000	Ground Roll	165	210	261	319	235		
1000	At 50 ft AGL	216	274	341	418	308		
2000	Ground Roll	184	234	291	356	258		
2000	At 50 ft AGL	241	306	381	466	338		
2000	Ground Roll	206	262	326	398	284		
3000	At 50 ft AGL	269	342	426	521	372		
4000	Ground Roll	230	293	364	446	312		
4000	At 50 ft AGL	301	383	477	583	409		
5000	Ground Roll	258	328	408	499	343		
5000	At 50 ft AGL	338	429	534	653	449		
6000	Ground Roll	289	368	457	559	378		
6000	At 50 ft AGL	378	481	599	732	495		
7000	Ground Roll	324	412	513	628	417		
7000	At 50 ft AGL	425	540	672	822	545		
0000	Ground Roll	364	463	577	705	460		
8000	At 50 ft AGL	477	606	755	923	602		
0000	Ground Roll	410	521	648	793	508		
9000	At 50 ft AGL	536	682	849	1038	664		
10000	Ground Roll	461	586	730	893	561		
10000	At 50 ft AGL	604	767	955	1168	734		

Page S5 - 9

<u>Weight = 93</u>	<u>0 kg (2051 lb)</u>			Correct	ons	
Flores T/O			Headwind:	- 2.5m for eac		t))
Flaps: T/O Speed at Lift-Off = 65 KIAS				10m for each		
Speed Over 50f			way: - 6% to G			
	s: Full Forward					
Runway: Gras	s		+1%	pe: + 5% to Gr		oreaun
Pressure			. 170	Distance [m]		
Altitude			Tompor	ature [°C]		
		-25	0	25	50	ISA
[ft]						
S.L.	Ground Roll	100	127	158	194	146
	At 50 ft AGL	131	167	207	254	190
1000	Ground Roll	112	142	177	216	160
	At 50 ft AGL	146	186	231	283	209
2000	Ground Roll	125	159	197	242	175
	At 50 ft AGL	163	208	258	316	229
3000	Ground Roll	140	177	221	270	192
	At 50 ft AGL	183	232	289	353	252
4000	Ground Roll	156	198	247	302	212
	At 50 ft AGL	204	260	323	395	277
5000	Ground Roll	175	222	277	338	233
	At 50 ft AGL	229	291	362	443	305
6000	Ground Roll	196	249	310	379	256
	At 50 ft AGL	257	326	406	496	335
7000	Ground Roll	220	280	348	426	282
/ 000	At 50 ft AGL	288	366	455	557	370
8000	Ground Roll	247	314	391	478	312
0000	At 50 ft AGL	323	411	512	626	408
9000	Ground Roll	278	353	440	538	344
5000	At 50 ft AGL	364	462	575	704	450
10000	Ground Roll	313	397	495	605	380
10000	At 50 ft AGL	409	520	648	792	498

Page S5 - 10

8. Take-off Rate of Climb at $V_{\mbox{\tiny Y}}$

aps: Take-Off anding Gear:							
Weight	Pressure	Climb Speed		Rate o	of Climb [f	t/min]	
	Altitude	Vy		Tempera	ture [°C]		ISA
[kg]	[ft]	[KIAS]	-25	0	25	50	
	S.L.	86	1276	1088	920	768	985
	2000	83	1133	948	783	634	873
Ĩ	4000	79	990	809	646	500	761
1230	6000	76	848	670	510	366	649
1230	8000	73	707	531	374	233	537
	10000	70	565	393	239	100	425
	12000	67	425	256	104	-32	313
-	14000	64	285	118	-30	-164	201
	S.L.	85	1507	1302	1119	954	1190
-	2000	82	1351	1150	970	808	1068
-	4000	79	1196	998	822	662	946
1080	6000	76	1041	847	674	517	825
1090	8000	73	887	696	526	372	703
-	10000	69	734	546	379	228	581
	12000	66	581	397	232	84	459
F	14000	63	428	248	86	-59	338
	S.L.	85	1803	1575	1372	1189	1451
	2000	82	1630	1406	1206	1026	1315
Ē	4000	79	1457	1238	1041	864	1180
020	6000	75	1286	1070	877	703	1045
930	8000	72	1114	902	713	542	909
	10000	69	944	735	549	382	774
Ī	12000	65	774	569	387	222	639
-	14000	62	604	404	224	63	503

Page S5 - 11

9. Take-off Rate of Climb at $V_{\boldsymbol{x}}$

Power Setting: Maximum Continuous Power Flaps: Take-Off Landing Gear: Up										
Weight	Pressure Altitude	Climb Speed Vx	Rate of Climb at V _x [ft/min]							
			Temperature [°C]				ISA			
[kg]	[ft]	[KIAS]	-25	0	25	50				
	S.L.	78	1214	1037	880	738	941			
1230	1000	76	1147	972	816	675	888			
	2000	75	1080	906	751	612	836			
	3000	74	1013	841	687	549	783			
	4000	73	946	776	623	486	731			
L	5000	72	879	710	560	424	678			
	6000	71	813	645	496	361	626			
-	7000	70	746	580	432	299	574			
	S.L.	78	1283	1102	940	794	1002			
	1000	76	1214	1034	874	729	949			
	2000	75	1145	967	808	664	895			
4000	3000	74	1076	900	742	600	841			
1080	4000	73	1008	833	676	535	787			
	5000	72	939	766	611	471	733			
	6000	71	871	699	545	407	679			
	7000	70	803	632	480	342	625			
930	S.L.	78	1435	1243	1072	918	1138			
	1000	76	1362	1172	1002	849	1081			
	2000	75	1289	1101	932	780	1024			
	3000	74	1216	1030	863	712	967			
	4000	73	1144	958	793	644	910			
	5000	72	1071	888	724	576	853			
	6000	71	999	817	654	508	796			
	7000	69	927	746	585	440	739			

Page S5 - 12

10. ENROUTE RATE OF CLIMB AT $V_{\scriptscriptstyle Y}$

Power Setting: Maximum Continuous Power Flaps: Up Landing Gear: Up										
Weight	Pressure Altitude	Climb Speed Vy	Rate of Climb [ft/min]							
				Temperature [°C]			ISA			
[kg]	[ft]	[KIAS]	-25	0	25	50	1.54			
1230	S.L.	84	1317	1135	973	827	1036			
	2000	83	1179	1000	841	697	928			
	4000	81	1041	865	709	568	819			
	6000	80	904	731	577	439	711			
	8000	78	767	598	446	310	603			
	10000	77	631	464	316	182	495			
	12000	75	495	332	186	54	387			
	14000	73	360	199	56	-73	279			
1080	S.L.	83	1560	1360	1182	1022	1251			
	2000	82	1408	1212	1037	879	1132			
	4000	80	1257	1064	892	737	1014			
	6000	78	1106	917	748	595	895			
	8000	76	956	770	604	454	776			
	10000	74	807	624	461	314	658			
	12000	72	657	478	318	173	539			
	14000	70	509	333	175	34	420			
930	S.L.	82	1873	1649	1449	1269	1527			
	2000	81	1703	1483	1286	1109	1393			
	4000	79	1533	1317	1124	950	1260			
	6000	77	1364	1151	962	791	1127			
	8000	75	1196	987	800	632	994			
	10000	73	1028	823	639	474	861			
	12000	71	860	659	479	317	727			
	14000	69	693	496	319	160	594			

Page S5 - 13

11. ENROUTE RATE OF CLIMB AT $\boldsymbol{V}_{\boldsymbol{x}}$

Power Setting Flaps: Up anding Gear:	: Maximum Contin Up	uous Power					
Weight	Pressure	Climb Speed	Rate of Climb at V _x [ft/min]				
Ū	Altitude	Vx		Tempera	iture [°C]		ISA
[kg]	[ft]	[KIAS]	-25	0	25	50	
	S.L.	72	1241	1073	924	789	982
	1000	72	1177	1011	863	729	932
	2000	72	1114	949	802	669	882
	3000	72	1050	887	741	609	832
1230	4000	72	986	825	680	550	782
	5000	72	923	763	619	490	732
	6000	71	860	701	559	431	682
	7000	71	797	639	498	371	632
	S.L.	72	1480	1295	1130	981	1194
	1000	72	1410	1226	1062	915	1139
	2000	72	1340	1158	995	848	1084
	3000	72	1269	1089	928	782	1029
1080	4000	71	1199	1020	861	717	973
	5000	71	1129	952	794	651	918
	6000	71	1059	884	727	585	863
	7000	71	990	815	660	520	808
	S.L.	72	1787	1578	1391	1223	1463
	1000	72	1707	1500	1315	1148	1401
	2000	71	1628	1422	1239	1074	1339
	3000	71	1549	1345	1163	999	1277
930	4000	71	1470	1268	1087	925	1215
	5000	71	1391	1190	1012	851	1153
	6000	71	1312	1113	936	777	1090
	7000	70	1233	1036	861	703	1028

COSTRUZIONI AERONAUTICHE

P2006T - Aircraft Flight Manual

12. One-Engine Rate of Climb at V_{YSE}

Power Setting: Maximum Continuous Power (operative engine)	
propeller feathered (inoperative engine)	

Flaps: Up

Landing Gear: Up

Weight	Pressure	Climb Speed		Rate o	f Climb [f	t/min]	
weight	Altitude	Vyse		Tempera	ture [°C]		ISA
[kg]	[ft]	[KIAS]	-25	0	25	50	
	S.L.	84	330	230	142	62	176
	1000	83	292	193	106	26	147
	2000	82	254	157	69	-9	117
1230	3000	81	216	120	33	-44	87
1230	4000	80	179	83	-3	-80	58
	5000	79	141	46	-38	-115	28
-	6000	79	104	10	-74	-150	-1
	7000	78	67	-27	-110	-185	-31
	S.L.	80	436	330	235	149	271
	1000	80	396	290	196	111	240
	2000	79	355	251	157	73	208
1080	3000	79	315	211	118	35	176
1000	4000	79	275	172	80	-3	145
	5000	79	234	132	41	-41	113
	6000	78	194	93	3	-78	81
	7000	78	154	54	-35	-116	50
	S.L.	79	574	455	349	253	390
	1000	79	529	411	305	211	355
	2000	79	483	367	262	168	319
020	3000	78	438	322	219	126	284
930	4000	78	393	278	176	83	248
	5000	78	348	235	133	41	213
	6000	78	304	191	90	-1	178
	7000	77	259	147	47	-43	142

COSTRUZIONI AERONAUTICHE P2

P2006T - Aircraft Flight Manual

13. One-Engine Rate of Climb at V_{xse}

Power Setting: Maximum Continuous Power (operative engine)	
propeller feathered (inoperative engine)	

Flaps: Up

Landing Gear: Up

Weight	Pressure	Climb Speed	Rate of Climb at V _{xSE} [ft/min]						
weight	Altitude	V _{xSE}		Tempera	iture [°C]		ISA		
[kg]	[ft]	[KIAS]	-25	0	25	50			
	S.L.	83	325	227	140	61	174		
	1000	82	288	191	104	26	145		
	2000	81	251	155	69	-9	116		
	3000	81	214	118	33	-44	86		
1230	4000	80	177	82	-2	-78	57		
	5000	79	140	46	-38	-113	28		
	6000	78	103	10	-73	-148	-1		
	7000	77	66	-26	-108	-183	-30		
	S.L.	79	424	321	229	147	265		
	1000	79	385	283	192	110	234		
	2000	79	346	245	155	73	204		
	3000	79	307	207	117	37	173		
1080	4000	79	268	169	80	0	143		
	5000	78	229	131	43	-36	112		
	6000	78	190	93	6	-73	81		
	7000	78	152	55	-31	-109	51		
	S.L.	78	556	442	341	249	380		
	1000	78	513	400	299	209	346		
	2000	78	469	358	258	168	312		
020	3000	78	426	316	217	128	279		
930	4000	78	383	274	176	87	245		
	5000	78	340	232	134	47	211		
	6000	77	298	190	93	7	177		
	7000	77	255	148	52	-34	143		

Page S5 - 16

14. CRUISE PERFORMANCES

Weight	: 1150 kg	(2535 lk)							
Pressur	e Altitud	e: 0 ft								
		ISA -	- 30°C (-1	.5°C)	I	SA (15°C)	ISA	+ 30°C (4	5°C)
RPM*	MAP	PWR	KTAS	F.C.**	PWR	KTAS	F.C.**	PWR	KTAS	F.C.**
	[inHg]		i i i i i i i i i i i i i i i i i i i	[lt/hr]			[lt/hr]			[lt/hr]
2250	29.5	103%	143	28.6	97%	145	27.1	92%	146	25.8
2250	28	88%	134	24.5	83%	136	23.2	79%	138	22
2250	26	69%	122	19.2	65%	124	18.2	62%	125	17.3
2250	24	59%	115	16.6	56%	116	15.7	53%	117	14.9
2250	22	46%	103	12.8	43%	103	12.1	41%	103	11.5
2250	20	39%	96	11	37%	95	10.4	35%	94	9.9
2100	28	84%	132	23.5	80%	134	22.2	76%	135	21.1
2100	26	66%	121	18.5	63%	122	17.5	60%	123	16.7
2100	24	57%	114	16	54%	114	15.1	52%	115	14.4
2100	22	43%	100	12.1	41%	100	11.5	39%	100	10.9
2100	20	37%	92	10.2	35%	91	9.7	33%	89	9.2
1900	26	61%	117	17.1	58%	118	16.2	55%	119	15.4
1900	24	53%	110	14.9	50%	111	14.1	48%	111	13.4
1900	22	41%	97	11.4	39%	97	10.8	37%	96	10.2
1900	20	35%	89	9.6	33%	88	9.1	31%	85	8.7
* Propel	ler RPM									
	Consumpt	tion for e	each Engi	ne						

2250

2250

2250

2250

2100

2100

2100

2100

1900

1900

1900

1900

23.6

22

20

18

23.6

22

20

18

23.6

22

20

18

Propeller RPM

81%

68%

57%

46%

77%

65%

54%

44%

71%

60%

50%

41%

138

129

119

108

135

126

116

106

130

122

112

102

22.6

19.1

15.8

12.9

21.6

18.2

15

12.4

19.8

16.8

13.9

11.6

76%

65%

54%

44%

73%

62%

51%

42%

67%

57%

47%

39%

139

130

120

108

137

127

116

106

132

123

112

102

21.4

18.1

14.9

12.2

20.4

17.2

14.1

11.7

18.7

15.8

13.1

10.9

73%

61%

51%

41%

69%

59%

48%

40%

64%

54%

44%

37%

141

131

120

107

138

128

117

105

133

123

112

100

Page S5 - 17

Weight	: 1150 kg	n (2535 I	b)							
•	e Altitud	· ·								
		· · · · · · · · · · · · · · · · · · ·	– 30°C (-2	21°C)		ISA (9°C)		ISA	+ 30°C (3	9°C)
RPM *	MAP			F.C.**	DIA/D		F.C.**			F.C.**
	[inHg]	PWR	KTAS	[lt/hr]	PWR	TCAS	[lt/hr]	PWR	KTAS	[lt/hr]
2388	26.4	92%	141	25.7	87%	143	24.3	83%	144	23.1
2250	26.4	89%	139	25	85%	141	23.6	80%	143	22.4
2250	26	85%	137	23.9	81%	138	22.6	77%	140	21.5
2250	24	72%	128	20	68%	129	18.9	64%	130	18
2250	22	57%	116	16	54%	117	15.1	51%	118	14.3
2250	20	48%	108	13.4	45%	108	12.7	43%	108	12.1
2100	26.4	85%	137	23.9	81%	138	22.6	77%	140	21.4
2100	26	82%	134	22.8	77%	136	21.6	73%	137	20.5
2100	24	69%	125	19.2	65%	127	18.1	62%	128	17.2
2100	22	54%	114	15.2	51%	114	14.3	49%	115	13.6
2100	20	45%	104	12.6	43%	104	11.9	41%	104	11.3
1900	26.4	78%	132	21.9	74%	134	20.7	70%	135	19.6
1900	26	75%	130	20.9	71%	131	19.8	67%	132	18.8
1900	24	63%	121	17.7	60%	122	16.7	57%	123	15.9
1900	22	50%	110	14.1	48%	110	13.3	45%	110	12.6
1900	20	42%	101	11.7	40%	101	11.1	38%	100	10.6
* Propell	er RPM									·
** Fuel C	onsumpti	on for ea	ch Engine							
Woight	· 1150 kg	, /7525 I	<i>b</i>)							
	: 1150 kg e Altitud									
Flessui		· · · · · · · · · · · · · · · · · · ·	– 30°C (-2	2°C)		ISA (3°C)		ICA	+ 30°C (3	2°C)
RPM *	МАР			F.C.**			F.C.**			5 CJ F.C.**
	[inHg]	PWR	KTAS	[<i>lt/hr</i>]	PWR	KTAS	[<i>lt/hr</i>]	PWR	KTAS	[<i>lt/hr</i>]
2388	23.6	83%	139	23.3	79%	141	22	75%	142	20.9

Section 5 - Performances CRUISE PERFORMANCES 4th Edition, Rev. 0

20.3

17.2

14.2

11.6

19.4

16.4

13.4

11.1

17.8

15

12.4

10.4

Page S5 - 18

** Fuel Consumption for each Engine

COSTRUZIONI AERONAUTICHE

Weight	: 1150 kg	ן (2535 I	b)							
Pressur	e Altitud	e: 9000	ft							
		ISA -	ISA – 30°C (-33°C)			ISA (-3°C)		ISA	+ 30°C (2	7°C)
RPM*	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	21.1	75%	137	20.9	71%	139	19.7	67%	140	18.7
2250	21.1	73%	136	20.3	69%	137	19.2	65%	138	18.2
2250	20	65%	130	18.3	62%	131	17.2	58%	131	16.3
2250	18	53%	118	14.9	50%	119	14	48%	118	13.3
2100	21.1	69%	133	19.4	65%	134	18.3	62%	135	17.4
2100	20	62%	127	17.4	59%	128	16.4	56%	128	15.6
2100	18	51%	116	14.2	48%	116	13.4	46%	116	12.7
1900	21.1	64%	128	17.8	60%	129	16.8	57%	130	15.9
1900	20	57%	122	16	54%	123	15.1	51%	123	14.3
1900	18	47%	112	13.2	44%	112	12.4	42%	111	11.8
* Prone	ller RPM									

* Propeller RPM

** Fuel Consumption for each Engine

•	Weight: 1150 kg (2535 lb) Pressure Altitude: 12000 ft									
		ISA -	- 30°C (-3	9°C)		ISA (-9°C)			+ 30°C (2	1°C)
RPM [*]	MAP [inHg]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]	PWR	KTAS	F.C. ** [lt/hr]
2388	18.8	67%	135	18.8	63%	136	17.7	60%	136	16.7
2250	18.8	65%	133	18.2	61%	134	17.2	58%	134	16.3
2250	18	60%	129	16.8	57%	129	15.9	54%	129	15
2100	18.8	62%	130	17.4	59%	131	16.4	56%	132	15.5
2100	18	58%	126	16.1	54%	126	15.2	51%	126	14.4
1900	18.8	57%	125	15.9	54%	126	15	51%	126	14.2
1900	18	53%	121	14.8	50%	121	13.9	47%	121	13.2
	ller RPM Consump	tion for (each Engl	ine						

EXTECNAM P2006T - Aircraft Flight Manual

Page S5 - 19

15. LANDING PERFORMANCES

Weight = 1230 kg (2712 lb)

Flaps: LAND

Short Final Approach Speed = 70 KIAS Throttle Levers: Idle Runway: Grass

Corrections

Headwind: - 5m for each kt (16 ft/kt))

Tailwind: + 11m for each kt (36ft/kt)

Paved Runway: - 2% to Ground Roll Runway slope: - 2.5% to Ground Roll for each +1%

Pressure			1	Distance [m	1]	
Altitude			Tempera	ture [°C]		16.0
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	199	219	239	259	231
J.L.	At 50 ft AGL	308	334	359	384	349
1000	Ground Roll	206	227	248	269	238
1000	At 50 ft AGL	318	344	370	396	358
2000	Ground Roll	214	236	257	279	245
	At 50 ft AGL	328	355	382	408	367
3000	Ground Roll	222	244	267	289	252
	At 50 ft AGL	348	377	406	434	385
4000	Ground Roll	230	254	277	300	260
4000	At 50 ft AGL	348	377	406	434	385
5000	Ground Roll	239	263	287	311	268
5000	At 50 ft AGL	359	389	419	448	395
6000	Ground Roll	248	273	298	323	276
8000	At 50 ft AGL	371	402	432	463	405
7000	Ground Roll	258	284	310	336	285
7000	At 50 ft AGL	382	415	446	478	416
8000	Ground Roll	268	295	322	349	294
8000	At 50 ft AGL	395	428	461	494	427
9000	Ground Roll	278	306	334	362	303
9000	At 50 ft AGL	408	442	476	510	438
10000	Ground Roll	289	318	348	377	313
10000	At 50 ft AGL	421	457	492	527	450

Section 5 - Performances LANDING PERFORMANCES

EXTECNAM P2006T - Aircraft Flight Manual

Page S5 - 20

Weight = 10	80 kg (2381 lb)			Corr	rections	
Flaps: LAND			Headwi	nd: - 5m for		ft/kt)
•	roach Speed = 70 KIAS	7		1: + 11m for		
Throttle Lever			Paved R	unway: - 2%	6 to Ground	Roll
Runway: Gras	s			slope: - 2.5		
			each +1	%		
Pressure				Distance [m]	
Altitude			Tempera	ture [°C]		10.0
[ft]		-25	0	25	50	ISA
S.L.	Ground Roll	175	192	210	227	203
3.L.	At 50 ft AGL	271	293	315	337	306
1000	Ground Roll	181	199	218	236	209
1000	At 50 ft AGL	279	302	325	348	314
2000	Ground Roll	188	207	226	245	215
2000	At 50 ft AGL	288	311	335	358	322
	Ground Roll	195	215	234	254	222
3000	At 50 ft AGL	306	331	356	381	338
	Ground Roll	202	223	243	263	228
4000	At 50 ft AGL	306	331	356	381	338
	Ground Roll	210	231	252	273	235
5000	At 50 ft AGL	315	342	368	394	347
6060	Ground Roll	218	240	262	284	243
6000	At 50 ft AGL	325	353	380	406	356
	Ground Roll	226	249	272	295	250
7000	At 50 ft AGL	336	364	392	420	365
	Ground Roll	235	259	283	306	258
8000	At 50 ft AGL	347	376	405	434	375
	Ground Roll	244	269	294	318	266
9000	At 50 ft AGL	358	388	418	448	385
	Ground Roll	254	280	305	331	275
10000	At 50 ft AGL	370	401	432	463	395

4th Edition, Rev. 0

Section 5 - Performances LANDING PERFORMANCES

G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

COSTRUZIONI AFROMAUTICHE P2006T - Aircraft Flight Manual

Page S5 - 21

-	<u>80 kg (205</u> 1 lb)			Corr	ections					
Flaps: LAND	proach Speed = 70 KIAS		Headwi			(t/kt)				
Chrottle Leve					: - 5m for each kt (<i>16 ft/kt</i>))					
Runway: Gras			Tailwind: + 11m for each kt (36ft/kt)) Paved Runway: - 2% to Ground Roll							
			Runway	/ slope: - 2.5%						
			each +1	%						
Pressure				Distance [m]]					
Altitude			Tempera	ature [°C]						
[ft]		-25	0	25	50	ISA				
6.1	Ground Roll	150	166	181	196	175				
S.L.	At 50 ft AGL	233	252	271	290	264				
1000	Ground Roll	156	172	187	203	180				
1000	At 50 ft AGL	240	260	280	299	270				
	Ground Roll	162	178	194	211	185				
2000	At 50 ft AGL	248	268	288	309	277				
	Ground Roll	168	185	202	219	191				
3000	At 50 ft AGL	263	285	307	328	291				
	Ground Roll	174	192	209	227	197				
4000	At 50 ft AGL	263	285	307	328	291				
	Ground Roll	181	199	217	235	203				
5000	At 50 ft AGL	272	294	317	339	299				
	Ground Roll	188	207	226	244	209				
6000	At 50 ft AGL	280	304	327	350	307				
	Ground Roll	195	215	234	254	215				
7000	At 50 ft AGL	289	313	338	361	315				
	Ground Roll	203	223	243	264	222				
8000	At 50 ft AGL	299	324	349	373	323				
	Ground Roll	210	232	253	274	229				
9000	At 50 ft AGL	308	334	360	386	331				
	Ground Roll	219	241	263	285	237				
10000	At 50 ft AGL	319	346	372	399	340				

EXTECNAM P2006T - Aircraft Flight Manual

Page S5 - 22

16. BALKED LANDING CLIMB GRADIENT

Flight conditions (ISA and SL):

Weight:	1230 kg (2712 lb)
Throttle levers	Both FULL FORWARD
Flaps	Τ/Ο
Landing gear	DOWN
Weight	MTOW 1230kg (2712 lb)
Speed	72 KIAS
Climb gradient	9.4% (5.4°)

17. Noise data

Noise level, determined in accordance with ICAO/Annex 16 4th Ed., July 2005, Vol. I°, Chapter 10, is **72.82** dB(A).

Supplement G19: page replacement instructions

SECTION 6 - WEIGHT AND BALANCE

See Basic AFM – Section 6

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\text{LE}}/V_{\text{LO}}$ and MD302

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\mbox{\tiny LE}}/V_{\mbox{\tiny LO}}$ and MD302

Supplement G19: page replacement instructions

SECTION 7 - AIRFRAME and SYSTEMS DESCRIPTION

Apply following page replacement procedure:

Supplement G19 – AIRFRAME and SYSTEMS DESCRIPTION page		Basic AFM Section 7 page
S7-1 thru S7-2	REPLACE	7-1 thru 7-2
S7-29 thru S7-42	REPLACE	7-29 thru 42

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\text{LE}}/V_{\text{LO}}$ and MD302

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased $V_{\mbox{\tiny LE}}/V_{\mbox{\tiny LO}}$ and MD302

COSTRUZIONI A ERONAUTICHE P2006T - Aircraft Flight Manual

SECTION 7 – AIRFRAME and SYSTEMS DESCRIPTION

INDEX

	1.	INTRODUCTION	3
	2.	AIRFRAME	3
	3.	POWERPLANT	9
	4.	PEDESTAL CONTROLS	12
	5.	CABIN OVER-HEAD PANEL CONTROLS.	15
	6.	INTERNAL LIGHTS	16
	7.	EXTERNAL LIGHTS	17
	8.	FUEL SYSTEM	19
	9.	LANDING GEAR SYSTEM	21
	10.	BRAKES	25
	11.	VENTILATION	26
		CABIN HEAT	
		SEATS AND SAFETY BELTS	
	14.	DOORS	27
	15.	BAGGAGE COMPARTMENT.	
16.	MD30	2 ALTERNATIVE STANDBY INSTRUMENT	
17.	PLAC	ARDS	
		INSTRUMENTS PANEL	
	_	ELECTRICAL SYSTEM	_

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S7 - 2

INTENTIONALLY LEFT BLANK

EXECTAN P2006T - Aircraft Flight Manual

Page S7 - 29

16. MD302 ALTERNATIVE STAND-BY INSTRUMENT

In order to improve the digital version cockpit layout of the P2006T in terms of human-machine interface, weight saving and reliability this backup instrument V.1.0.5 is installed.

For more details refer to MOD2006/212.

All MD302 Stand-by Attitude Module settings, set up during the aircraft delivery or after a maintenance activity, must not be modified.

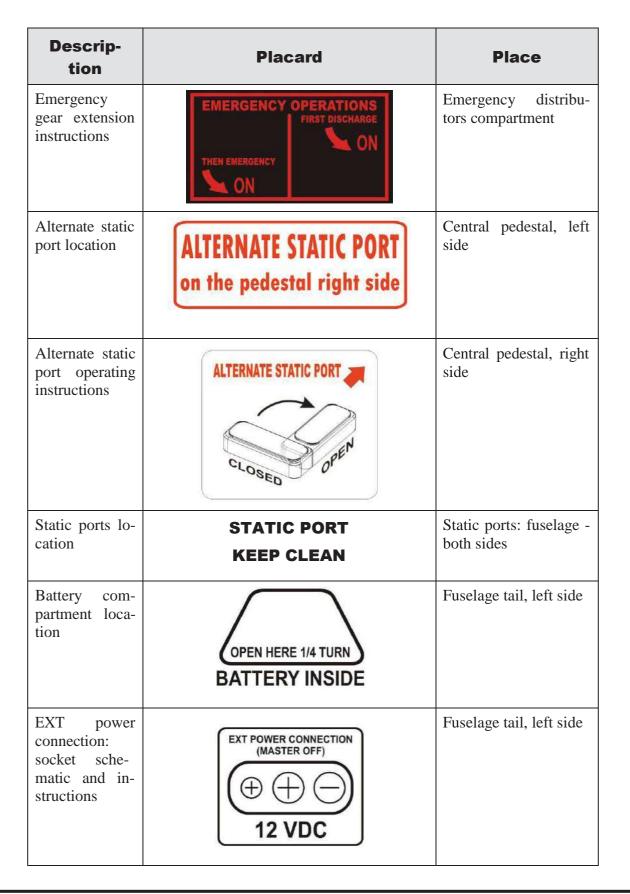
In case of replacement of MD302 Stand-by Attitude Module, verify proper software load and confirm that its software version number is compliance with that one showed above, before install it. G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S7 - 30

INTENTIONALLY LEFT BLANK

17. PLACARDS

In addition to the limitation placards reported on Section 2, following placards are installed on the aircraft.



Additionally, nearby the placards listed below (English language), directly-translated placards in the language of the country in which the airplane is registered can be installed, when required by the specific NAA.

Descrip- tion	Placard	Place	
ELT equipment location	ELTHERE	Baggage compartment, right side	
First Aid Kit location	FIRST AID KIT	Baggage compartment, aft cover panel	
Fire extin- guisher loca- tion		Cockpit floor, pilot side	
Emergency gear extension compartment location	PULL TO OPEN EMERGENCY GEAR EXTENSION MAX 93KIAS	Removable cap	

COSTRUZIONIAEROMAUTICHE P2006T - Aircraft Flight Manual

Page S7 - 32

Section 7 – Airframe and Systems Description PLACARDS

G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

EXTECNAM P2006T - Aircraft Flight Manual

Page S7 - 33

Descrip- tion	Placard	Place
Landing gear hydraulic accu- mulator: low pressure limit	LOW PRESSURE LIMIT	LG hydraulic compart- ment cap (fuselage tail, left side)
LG hydraulic compartment location	LANDING GEAR HYDRAULIC COMPARTMENT	Fuselage tail, left side, in correspondence of LG hydraulic compart- ment cap
Towing limita- tions	CAUTION TOWING MAXIMUM TURNING ANGLE: 20° EITHER SIDE OF CENTER	Nose LG forward door
Stabilator ex- cursion range	5° 0° 16°	Fuselage tail, left side, in correspondence of the stabilator leading edge
Aircraft grounding	CONNECT THE AIRCRAFT TO ELECTRICAL GROUND BEFORE REFUELING	Close to the fuel filler cap
Engine coolant expansion tank location	COOLANT	Engine nacelle top side

Section 7 – Airframe and Systems Description PLACARDS

G1000 NXi, Increased MTOW, Increased $V_{\rm LE}/V_{\rm LO}$ and MD302

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page

Page S7 - 34

Descrip- tion	Placard	Place
Steel boards: a/c identifica- tion marks	O I-TELT O	Fuselage tail, left side
	O A/c: P2006T O S/N: 001 T.C.: n° EASA X	
Main LG tires	(Sample)	MLG leg, LH and RH
inflation pres- sure values	TIRES INFL. PRESSURE MAIN LG 2.3bar/33psi	MLO IO ₂ , LIT and RIT
Nose LG tire inflation pres- sure values	TIRES INFL. PRESSURE NOSE LG 1.7bar/24psi	Nose LG fork

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page S7 - 35

INTENTIONALLY LEFT BLANK

COSTRUZIONI ARTINAUTICHE P2006T - AIRCRAft Flight Manual Page S7 - 36

INTENTIONALLY LEFT BLANK

(1 36 35 34 33 32 ANNEYS BRAND SHOP C. BOR . 31 \bigcirc 30 26 25 24 28 27 (29) 10) 9 11 19 22 (21) (20)

18. INSTRUMENTS PANEL

GARMIN G1000 NXi - Instruments panel (typical layout)

Item	Description		
1	GDU 1050 (PFD)		
2	Audio Panel		
3	A/P Programmer/Computer		
4	GDU 1050 (MFD)		
5	Main bus breaker panel		
6	Ess bus breaker panel (RH)		
7	Ess bus breaker panel (LH)		
8	Avionic bus breaker panel (LH & RH)		
9	Battery and Alternators (LH & RH) breakers		
10	Cabin ventilation (RH)		
11	Instrument light switch		
12	Strobe light switch		

Section 7 – Airframe and Systems Description INSTRUMENTS PANEL

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual P

Page S7 - 38

Item	Description			
13	Navigation light switch			
14	Taxi light switch			
15	Landing light switch			
16	Cabin/Instruments/Panel lights dimmers			
17	Flaps switch			
18	MD-302 Standby Attitude Module			
19	Cross bus 2 switch			
20	RH battery switch			
21	Cross bus 1 switch			
22	Master switch			
23	Avionics master switch 2			
24	Avionics master switch 1			
25	LH Battery Switch			
26	Landing gear lever			
27	Windshield defrost			
28	Cabin heat			
29	Cabin ventilation			
30	Emergency Locator Transmitter switch			
31	A/P master switch			
32	Pitot heating switch			
33	Rudder trim disconnect switch			
34	Pitch trim disconnect switch			
35	Electric fan switch			
36	Fire detection system test switch			

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

19. ELECTRICAL SYSTEM

Primary DC power is provided by two engine-driven generators which, during normal operations, operate in parallel.

Each generator is rated of 40 Amps and 14 VDC, as the two voltage regulators. An automatic overvoltage device protects the circuits and the electric components from an excessive voltage caused by generator failures.

The power rating of each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a main battery (lead type - 12 V, 23-Ah) and a secondary battery (lead type - 12V, 13 Ah).

An external DC power source can be connected to the aircraft distribution system in order to have it fed without starting the engine.

The ammeter section of the G1000 EIS can indicate the current supplied by either left or right generator switching a dedicated selector.

There are five different buses:

- Battery bus,
- LH Generator bus,
- RH Generator bus,
- LH Avionics bus,
- RH Avionics bus.

The distribution system operates as a single bus with power being supplied by the battery and both generators but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

The switches to enable and disable the alternators and battery are grouped in the master switches group and are located in the centre side of the instrument panel. Only the emergency switch, that allow to put in parallel both batteries is located in left side of the instrument panel.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions is connected to separate busses.

The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both generators. This allows the bus for remaining active also in case of two independent faults in the supply paths.

Page S7 - 40

The following loads are connected to the battery bus:

Breaker ID
Start LH
Start RH
Fan TAS (if installed)
Fuel Pump LH
Fuel Pump RH
E.I.S. 1
E.I.S. 2
P.F.D.
GPS/NAV 1
COM 1
AHRS
Stall warning
A.D.I.
ADC
Flaps actuator
Door
Cabin Light
Landing light
Strobe Light
Instr. Light
Cross bus
Pilot seat
Backup Battery
Landing Gear
Relay Landing Gear
Light Landing Gear

• In addition, Emergency Light is connected directly on the battery.

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual

Cross Bus LH	Cross Bus RH	Avionic Bus LH	Avionic Bus RH
Field LH	Field RH	Avionic bus LH	Avionic bus RH
Taxi Light	Rudder Trim	Trim A/P	COM 2
Pitot Heat	Co-pilot seat	A/P	M.F.D.
Voltage regulator LH	Voltage regulator RH	XPDR	A.D.F.
Cabin fan	Nav Light	D.M.E.	GPS/NAV 2
-	Audio panel	Turn coord	Converter 12/24
-	Avionic Fan	TCAS	12V socket

On the central pedestal (see Figure below) there are seven switches disposed on two rows: on the first row there is the MASTER SWITCH which allows for connecting, through the battery relay, the battery to the battery bus.

LH and RH FIELD switches control the pertinent generator: setting the switch to OFF puts the pertinent generator off-line.

In correspondence of the second row there are 4 switches LH/RH AVIONIC and LH/ RH CROSS BUS.

0	FF C	1	OFF
F		ASTER	RH FIELD
OFT	OFF	OFF	ort
AVIONIC1	AVIONIC2	CROSS BUS1	CROSS BUS2

Central pedestal switches console

The first two switches allow, through a relay, to cut off the power supply to the pertinent avionic bus.

The second ones allow, through a relay, for realizing the parallel connection between the pertinent generator bus and the battery bus. Setting these ones to OFF, the pertinent generator bus (and related avionic bus supplied) is separated from the battery bus and from opposite generator bus. COSTRUZIONI AFRONAUTICHE P2006T - Aircraft Flight Manual

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.

Supplement G19: page replacement instructions

SECTION 8 – AIRCRAFT CARE AND MAINTENANCE

See Basic AFM – Section 8

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased V_{LE}/V_{LO} and MD302

INTENTIONALLY LEFT BLANK

4th Edition, Rev. 0

Section 9 - Supplements

AFMS G19 – G1000 NXI, Increased MTOW, Increased V_{LE}/V_{LO} and MD302

SUPPLEMENT NO. G20 - GARMIN GTX345R TRANSPONDER

Record of Revisions

Rev	Revised pageDescription of Revision	Description of	Tecnam Approval			EASA Approval or Under DOA
Nev		DO	OoA	HDO	Privileges	
0	-	First issue	A. Sabino	M. Oliva	L. Pascale	Approved under DOA No. EASA.21J.335 privileges.

List of Effective Pages

Page	Revision	Page	Revision
G20-1	Rev 0	G20-3	Rev 0
G20-2	Rev 0	G20-4	Rev 0

INTRODUCTION

This section contains supplemental information to operate the aircraft in a safe and efficient manner when equipped with Garmin GTX345R device.

GENERAL

Garmin GTX345R is a transponder operating with A, C and S mode. Its user interface is part of GARMIN G950 NXi software

LIMITATIONS

Garmin GTX345R manuals do not address operating limitations more severe than those usually applicable to the P2006T.

EMERGENCY PROCEDURES

In case of emergency conditions, transponder is able to sent codified messages to the Air Traffic Control; messages are classified as follows:

Code	Condition	
7500	Aircraft subjected to illegal interference	
7600	Loss of radio communications	
7700	Emergencies	

NORMAL OPERATIONS

DETAILED OPERATING PROCEDURES

Normal operating procedures are described on GARMIN G950 NXi Pilot's guide (P/N 190-02286-00) rev. 00 or later versions.

GARMIN G950 NXi Pilot's guide (P/N 190-02286-00) - rev. 00 or later versions - must be carried onboard the airplane at all times.

PERFORMANCES

Garmin GTX345R employment does not affect the aircraft performances

WEIGHT AND BALANCE

See Section 6 of this Manual.

SYSTEMS

GTX 345R is a Mode S transponder with ADS-B extended squitter capability and also includes UAT and 1090 receivers for ADS-B IN/OUT capabilities. It is mounted on a rack, located behind the PFD.

It delivers up to 250 watts of nominal power. The PFD displays the code, reply symbol and mode of operation; in the event of PFD failure the system switches to reversionary mode and the transponder interface can be operated from MFD.

The GTX 345R is connected to both GIA63W and to XPDR antenna.

Figure 1 – Garmin GTX 345R

INTENTIONALLY LEFT BLANK

SUPPLEMENT NO. G21

BECKER 3500 ADF FOR GARMIN NXI

Record of Revisions

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval or Under DOA
			DO	OoA	HDO	Privileges
0	-	First issue	A. Sabino	C. Caruso	M. Oliva	Approved under DOA privileges.

List of Effective Pages

Page	Revision
G21-1	Rev 0
G21-2	Rev 0

4th Edition, Rev. 0

Section 9 - Supplements Supplement no. G21 - Becker 3500 ADF for GARMIN NXi

GENERAL

Refer to basic AFM.

LIMITATIONS

Refer to basic AFM.

EMERGENCY PROCEDURES

Refer to basic AFM.

NORMAL PROCEDURES

The user interface of Becker 3500 ADF system is part of the GARMIN NXi Suite software.

Normal operating procedures are described on GARMIN NXi Pilot's guide.

GARMIN NXi Pilot's guide (P/N 190-02286-00) - rev. 00 or later versions - must be carried onboard the airplane at all times.

PERFORMANCE

Refer to basic AFM.

WEIGHT AND BALANCE

Refer to basic AFM.

AIRFRAME AND SYSTEMS DESCRIPTION

Refer to basic AFM.

AIRCRAFT CARE AND MAINTENANCE

Refer to basic AFM.

4th Edition, Rev. 0

SUPPLEMENT NO. G22

GARMIN GTS800 TAS FOR GARMIN NXI

Record of Revisions

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval or Under DOA
			DO	OoA	HDO	Privileges
0	-	First issue	A. Sabino	C. Caruso	M. Oliva	Approved under DOA privileges.

List of Effective Pages

Page	Revision
G22-1	Rev 0
G22-2	Rev 0

4th Edition, Rev. 0

GENERAL

Refer to basic AFM.

LIMITATIONS

Refer to basic AFM.

EMERGENCY PROCEDURES

Refer to basic AFM.

NORMAL PROCEDURES

The user interface of GARMIN GTS800 TAS system is part of the GARMIN Suite software.

Normal operating procedures are described on GARMIN NXi Pilot's guide .

GARMIN G950 Pilot's guide (P/N 190-02286-00) - rev. 00 or later versions - must be carried onboard the airplane at all times.

PERFORMANCE

Refer to basic AFM.

WEIGHT AND BALANCE

Refer to basic AFM.

AIRFRAME AND SYSTEMS DESCRIPTION

Refer to basic AFM.

AIRCRAFT CARE AND MAINTENANCE

Refer to basic AFM.

4th Edition, Rev. 0

SUPPLEMENT NO. G23

SMP CONFIGURATION FOR GARMIN NXI AVIONICS SUITE

RECORD OF REVISIONS

Rev	Revised page	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA
NCV			DO	OoA	HDO	Privileges
0	-	First issue	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA ref. EASA.21J.335 MOD2006/345.181120
1	G23-1 to 3	Amended title, references to Garmin Avionics Suite. Typo on cross-reference to Supplement G06 corrected.	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA ref. EASA.21J.335 MOD2006/357.190226

The information herein contained have been previously published in Supplement G14, which remains applicable for the aircraft equipped with Garmin G950 avionics.

LOEP

	Pages	Revision
Cover pages	G14 – 1 thru 3	Rev. 1
	G14 – 4 thru 22	<i>Rev.</i> 0
Section 2	SMP2 – 3	<i>Rev.</i> 0
Section 3	SSMP3 – 3 thru 5	<i>Rev.</i> 0
	SSMP3 – 7 thru 9	<i>Rev.</i> 0
	SSMP3 – 21	<i>Rev.</i> 0
	SSMP3 – 29	<i>Rev.</i> 0
	SSMP3 – 36 thru 40	<i>Rev.</i> 0
	SSMP3 – 49 thru 53	<i>Rev.</i> 0
Section 4	SSMP4 – 26 thru 27	<i>Rev.</i> 0
Section 7	SSMP7 – 41	<i>Rev.</i> 0
	SSMP7 – 44 thru 48	<i>Rev.</i> 0

Ed.4, Rev.1

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with Garmin NXi Integrated Flight Deck System (Design Change MOD 2006/271) and with Special Mission Platform. The Special Mission Platform refers to the following design changes:

- MOD2006/046 Power supply from built-in generators
- MOD2006/202 Replacement of existing 40A alternators with 70A
- MOD2006/204 Installation of converter box

For the two first design changes the supplements (n° G06 and G13) are already approved by EASA and in this supplement we report the same information for reference.

The Rotax engine built-in generators, one for each engine, feed two bus bars made available for end user equipment, when the design change 2006/046 is installed.

When 70A alternators are installed replacing the standard, 40A ones, the electrical system logic is not affected by any substantial change. Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2 - 14,8 Vdc (through two external, first fuselage frame installed voltage regulators), 70 Amp and is provided with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator's failures.

The power rating of the each generator is such that if one generator fails the other one can still supply the airplane equipment to maintain flight safety.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual or the Supplement G19, as applicable: detailed instructions are provided to allow the owner for replacing the Basic AFM/Supplement G19 pages containing information amended as per the Design Changes in subject.

NOTE

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

INTENTIONALLY LEFT BLANK

Supplement G23: pages replacement instructions

SECTION 1 - GENERAL

Apply following instruction:

See Basic AFM - Section 1

Section 9 - Supplements

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

Supplement G23: pages replacement instructions

SECTION 2 - LIMITATIONS

Apply following pages replacement procedure:

Supplement G23 - LIMITATIONS page		Basic AFM Section 2 page
SMP2 – 3	REPLACES	Page 2 – 3 of Basic AFM, Section 2

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION **CONTRUCTION ARTICLE** CONTRUCTION ARTICLE CONTRUCTION ARTICLE CONTRUCTION ARTICLE CONTRUCTION C

1. INTRODUCTION

Section 2 includes operating limitations, instrument markings and basic placards necessary for safe operation of *P2006T* aircraft, its engines and standard systems and equipment.

LH and RH AUX FIELDS, enabling the converter box operations for Special Mission purposes, should be kept OFF during take-off, climb, landing and any abnormal procedure that affects electrical generating system (including single engine operation):

During Take-off, Climb, Landing and Single Engine Operations:

LH and RH AUX FIELD switches

BOTH OFF

This limitation only applies when both 70Amp alternators and converter box are installed.

Safety provisions, as following described, automatically disengage the LH and RH AUX FIELDS in case of one main field malfunction (i.e. for OEI). Also, if only one AUX FIELD switch is ON, the converter box is not powered.

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Supplement G23: pages replacement instructions

SECTION 3 – EMERGENCY PROCEDURES

Supplement G23 - EMERGENCY PROCEDURES page		Supplement G19 Section 3 page
SSMP3 – 3 thru 5	REPLACE	Page S3 – 3 thru 5 of Supplement G19, Section 3
SSMP3 – 7 thru 9	REPLACE	Page S3 – 8 thru 11 of Supplement G19, Section 3
SSMP3 – 21	REPLACES	Page S3 – 21 of Supplement G19, Section 3
SSMP3 – 29	REPLACES	Page S3 – 29 of Supplement G19, Section 3
SSMP3 – 36 thru 40	REPLACE	Page S3 – 36 thru 40 of Supplement G19, Section 3
SSMP3 – 49 thru 53	REPLACE	Page S3 – 49 thru 53 of Supplement G19, Section 3

Apply following pages replacement procedure:

Section 9 - Supplements

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONIA AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-3

1. INTRODUCTION

Section 3 includes checklists and detailed procedures for coping with various types of emergency conditions that could arise after a system failure.

The procedures affected from installation of the Special Mission Platform are the following:

- Single alternator failure / overvoltage
- Both alternators failure
- Both alternators overvoltage
- Engine securing
- Total electrical failure
- Inflight engine restart
- Engine failure during takeoff run
- Engine failure during climb
- Engine failure in flight
- Engine fire on the ground
- Engine fire during takeoff run
- Engine fire in flight
- Electrical smoke in cabin on the ground
- Electrical smoke in cabin during flight

The main difference regarding aircraft systems, compared with the basic AFM, is the presence of the Power supply from built-in generators, Alternators with 70A and Converter Box. The powering and disconnection of converter box is very simple and, in most of abnormal cases, is automatically managed by relays and safety provisions.

The converter box (following described in Section 7) is managed by the pilot only via two switches, located in the bottom LH side of pilot seat on a single panel provided by: two switches, two breakers and two indicating lamps.

Only when pilot selects BOTH switches ON (right and left AUX) and both alternators are operative the system allows a surplus of power generated by the engines and alternators to flow into 4x converters and, then, into mission equipment, when installed.

The health status of converters inside the box (located into the baggage compartment) is monitored by mission operator, via 4x failure indicating lamps. Following the key concepts when managing converter boxes:

- 1. Mission Power Switches: they enable the converter box ONLY when BOTH are set to ON;
- 2. Converter box power: enabled only if both LH and RH main alternators are generating power;
- 3. Converter box: automatically switches OFF in case LH or RH main alternators is faulty / not generating;
- 4. Converter box: automatically switches OFF in case LH or RH mission switch is set to OFF;

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION CONTRUCTION ARTICLE P2006T - AIRCRAFT Flight Manual Page SSMP3-4

5. Failure lamp: when illuminated, indicates that the correspondent converter is not working properly and needs to be replaced if the maximum available power from converter box is needed. When all converters are working properly, the system is capable to output 40A@28V. If one converter fails, 12A@28V are lost. For this reason, the end-user mission can continue if the equipment demand is less than 25/28A. On the contrary, the converter needs to be replaced.

Before operating the aircraft, the pilot/operator should become thoroughly familiar with this manual and, in particular, with this Section. Further on a continued and appropriate training and self study should be done.

Two types of emergency procedures are hereby given.

a. "BOLD FACES" which must be known by heart by the pilot and executed, in the correct and complete sequence, immediately after the failure is detected and confirmed.

These procedures characters are boxed and highlighted:

1.1 ENGINE FAILURE DURING TAKEOFF RUN

	BEFORE ROTATION: ABORT TAKE OFF					
1.	Throttle Lever	BOTH IDLE				
2.	Rudder	Keep heading control				
3.						
4.						
b. "o	b. "other procedures" which should be well theoretically known and mastered,					

. "other procedures" which should be well theoretically known and mastered, but that can be executed entering and following step by step the AFM current section appropriate checklist.

Additionally operating the aircraft, the pilot should become thoroughly familiar with the Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - and, in particular, with the present AFM Section.

Garmin G950 Pilot's Guide for Tecnam P2006T (P/N 190-01146-XX) – last issue - must be carried onboard the airplane at all times.

Garmin G950 has a very high degree of functional integrity. However, the pilot must recognize that providing monitoring and/or self-test capability for all conceivable system failures is not practical. Although unlikely, it may be possible for erroneous operation to occur without a fault indication shown by the G950. It is thus the responsibility of the pilot to detect such an occurrence by means of crosschecking with all redundant or correlated information available in the cockpit.

Section 3 – Emergency procedures INTRODUCTION

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-5

In any case, as a failure or abnormal behaviour is detected pilots should act as follows:

1. Keep self-control and maintain aircraft flight attitude and parameters 2. Analyse the situation identifying, if required, the area for a possible emergency landing

3. Apply the pertinent procedure

4. Inform the Air Traffic Control as applicable

For the safe conduct of later flights, any anomaly and/or failure must be communicated to the National Authorities in charge, in order to put the aircraft in a fully operational and safe condition.

In this Chapter, following definitions apply: Land as soon as possible: land without delay at the nearest suitable area at which a safe approach and landing is assured.

Land as soon as practical: land at the nearest approved landing area where suitable repairs can be made.

Annunciation window	Alert window
L ALT FAIL	Lh Alternator
OF	R
R ALT FAIL	Rh Alternator
1. FIELD LH (or RH)	OFF
2. LH and RH AUX FIELD swit	
3. FIELD LH (or RH)	ON
If the LH (or RH) ALT	caution stays displayed
1. FIELD LH (or RH)	OFF

- 1. CROSS BUS LH (or RH)
- 2. Land as soon as practical.

NOTE

The battery and a single generator are able to supply the electrical power necessary for the entire mission, but redundancy is lost.

OFF

2.2 BOTH ALTERNATORS FAILURE

Annunciation window	Alert window	
L ALT FAIL	Lh Alternator	
R ALT FAIL	Rh Alternator	
	in i inclinator	

In event of both L and R ALT FAIL caution alerts displayed:

1.	FIELD LH and RH	BOTH OFF
2.	LH and RH AUX FIELD switch	BOTH OFF
3.	FIELD LH and RH	BOTH ON

If both LH and RH ALT cautions stay displayed

	If anging starting battery r	nodification is applied
2.	CROSS BUS LH and RH	BOTH OFF
1.	FIELD LH and RH	BOTH OFF

If engine starting battery modification is applied

ON

- 1. EMERG BATT switch
- 2. Land as soon as possible.

If engine starting battery modification is not applied

1. Land as soon as possible.

NOTE

The battery can supply electrical power for at least 30 minutes.

2.3 BOTH ALTERNATORS OVERVOLTAGE

Annunciation window	Alert window
L BUS VOLT HIGH	Lh overvoltage
R BUS VOLT HIGH	Rh overvoltage

In event of both L and R BUS VOLT HIGH warning alerts displayed:

1. FIELD LH and RH	BOTH OFF
2. LH and RH AUX FIELD switch	BOTH OFF
3. FIELD LH and RH	BOTH ON (one at a time)

if LH (or RH) OVERVOLT warning stays displayed

1. FIELD LH (or RH)	OFF
---------------------	-----

if both LH and RH OVERVOLT warning stay displayed

1. CROSS BUS LH and RH	BOTH OFF		
2. FIELD LH and RH	BOTH OFF		
3. FIELD LH and RH	BOTH ON (one at a time)		
If LH (or RH) OVERVOLT warningt stays displayed			
1. FIELD LH (or RH)	OFF		
2. CROSS BUS LH (or RH)	ON		
If both LH and RH OVERVOLT warning stay displayed			
1. FIELD LH and RH	BOTH OFF		
2. CROSS BUS LH and RH	BOTH OFF		
If engine starting battery modification is applied			
1. EMERG BATT switch ON			
2. Land as soon as possible.			
If engine starting battery modification is not applied			
1 Land as soon as nossible			

1. Land as soon as possible.

NOTE

The battery can supply electrical power for at least 30 minutes.

P2006T - Aircraft Flight Manual

3. ENGINE SECURING

Following procedure is applicable to shut-down one engine in flight:

1. Throttle Lever	IDLE
2. Ignition	BOTH OFF
3. Propeller Lever	FEATHER
4. Fuel Selector	OFF
5. Electrical fuel pump	OFF
6. LH and RH AUX FIELD switch	BOTH OFF

If necessary, this procedure is applicable to both engines. When both engines are secured, both CROSS BUS switches must be set to OFF.

After securing engine(s), after analysing situation, refer immediately to following procedures:

ENGINE FAILURE IN FLIGHT:	see Para. 6.5
SINGLE GENERATOR FAILURE:	see Para. 2.1
or BOTH GENERATOR FAILURE:	see Para. 2.2
INFLIGHT ENGINE RESTART:	see Para. 6.2
ONE ENGINE INOPERATIVE LANDING:	see Para. 6.6
or LANDING WITHOUT ENGINE POWER:	see Para. 10.1

5. OTHER EMERGENCIES

5.1 EMERGENCY DESCENT

Descent with airspeed at VLE, idle power and gear down will provide high descent rates and pitch attitudes up to -15°.

Anticipate altitude capture and return to level flight during emergency descent in order to assure a safe and smooth recovery from maneuver.

1.	Power levers	IDLE
2.	Flaps	UP
3.	IAS	below VLO/VLE
4.	Landing gear	DOWN
5.	Airspeed	Up to VLE

5.2 TOTAL ELECTRICAL FAILURE

In case of electrical system overall failure, apply following procedure:

1.	Emergency light	ON
2.	Standby attitude indicator switch	ON
3.	MASTER SWITCH	OFF
4.	FIELD LH and RH	BOTH OFF
5.	LH and RH AUX FIELD switch	BOTH OFF
6.	MASTER SWITCH	ON
7.	FIELD LH and RH	BOTH ON

If failure persists

9. EMERG BATT switch

ON (if engine starting battery installed)

10. **Land as soon as possible** applying *emergency landing gear extension* procedure (see Para. 7.1)

An electrical system overall failure prevents flaps operation: landing distance without flaps increases of about 25%.

A fully charged battery can supply electrical power for at least 30 minutes.

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

ECNAM P2006T - Aircraft Flight Manual

6.2 **INFLIGHT ENGINE RESTART**

After:

- mechanical engine seizure;
- fire;
- major propeller damage

engine restart is not recommended.

- 1. Carburettor heat
- 2. Electrical fuel pump
- 3. Fuel quantity indicator
- 4. Fuel Selector
- 5. FIELD
- 6. LH and RH AUX FIELD switch
- 7. Ignition
- Operating engine Throttle Lever 8.
- Stopped engine Throttle Lever 9.
- 10. Stopped engine Propeller Lever
- 11. Start push-button
- 12. Propeller Lever
- 13. FIELD
- 14. Engine throttle levers

15. EMERG BATT switch

ON if required ON CHECK CHECK (Crossfeed if required) OFF BOTH OFF BOTH ON SET as practical IDLE FULL FORWARD PUSH SET at desired rpm *ON* (check for positive ammeter) SET as required

Page SSMP3-36

If engine restart is unsuccessful

ON (if starting battery installed)

16. Repeat engine restart procedure

After engine restart, if practical, moderate propeller rpm and throttle increase to allow OIL and CHT/CT temperatures for stabilizing in the green arcs.

If the fuel quantity in the tank which feeds the stopped engine is low, select the opposite side fuel tank by means of the fuel selector.

If engine restart is still unsuccessful:

17. Affected engine

SECURE (see engine securing procedure Para. 3)

18. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

6.3 ENGINE FAILURE DURING TAKEOFF RUN

	BEFORE ROT	TATION: ABORT TAKE OFF	
1.	Throttle Lever	BOTH IDLE	
2.	Rudder	Keep heading control	
3.	Brakes	As required	

When safely stopped:

- 4. Failed Engine Ignition
- 5. Failed Engine Field

6. LH and RH AUX FIELD switch

7. Failed Engine Electrical fuel pump

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

BOTH OFF

BOTH OFF

OFF

OFF

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

*V*_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

- 1. Operating engine Throttle Lever
- 2. Operating engine Propeller Lever
- 3. Heading
- 4. Attitude
- 5. <u>Inoperative engine Propeller Lever</u>
- 6. Landing gear control lever
- 7. Airspeed
- 8. Flaps
- 9. LH and RH AUX FIELD switch

FULL POWER

FULL FORWARD Keep control using rudder and ailerons Reduce as appropriate to keep airspeed over 62 KIAS FEATHER UP V_{XSE}/V_{YSE} as required 0° BOTH OFF

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-39

0.4 ENGINE FAILURE DURING CLIMB	6.4	ENGINE FAILURE DURING CLIMB	
---------------------------------	-----	-----------------------------	--

1. Autopilot	OFF
2. Heading	Keep control using rudder and ailerons
3. Attitude	Reduce as appropriate to keep airspeed
	over 62 KIAS

- 4. Operating engine Throttle Lever
- 5. Operating engine Propeller Lever
- 6. Operative engine Electrical fuel pump
- 7. LH and RH AUX FIELD switch
- 8. <u>Inoperative engine</u> Propeller Lever
- 9. <u>Inoperative engine</u>

FULL THROTTLE FULL FORWARD Check ON BOTH OFF FEATHER Confirm and SECURE

If engine restart is possible:

10. Apply INFLIGHT ENGINE RESTART procedure *see Para 6.2*

If engine restart is unsuccessful or it is not recommended:

- 11. Land as soon as possible
- 12. One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 1, "One-engine rate of climb".

Ed.4, Rev.0

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual P

OFF

6.5 ENGINE FAILURE IN FLIGHT

- 1. Autopilot
- 2. Heading
- 3. Attitude
- Keep control using rudder and ailerons Adjust as appropriate to keep airspeed over 62 KIAS
- 4. LH and RH AUX FIELD switch
- 5. Operating engine
- 6. Operative engine Electrical fuel pump
- 7. Operating engine Fuel Selector

BOTH OFF Monitor engine instruments Check ON Check correct feeding (crossfeed if needed)

If engine restart is possible:

8. Apply INFLIGHT ENGINE RESTART procedure see Para 6.2

If engine restart is unsuccessful or it is not recommended:

- 9. Land as soon as possible
- **10.** One engine inoperative landing procedure. *see Para. 6.6*

Following a mechanical engine seizure, fire or a major propeller damage engine restart is not recommended.

Continuation of flight to a safe landing runway must be planned taking into account maximum operating ceiling in OEI condition. Refer to Section 5 Para 12. Rate of climb with One Engine Inoperative.

Ed.4, Rev.0

GARMIN G950 IFDS - SMP FOR DIGITAL CONFIGURATION COSTRUZIONIA AROMAUTICHE P2006T - AITCRAft FIIght Manual Page SSMP3-49

8 SMOKE AND FIRE OCCURRENCE

WARNING

rection.

	8.1 ENGINE FIRE ON THE GROUND		
1	Fuel Selectors	BOTH OFF	
1. 2.	Ignitions	ALL OFF	
3.	LH and RH AUX FIELD switch	BOTH OFF	
4.	Electrical fuel pumps	BOTH OFF BOTH OFF	
5	Cabin heat and defrost	OFF	
6.	MASTER SWITCH	OFF	
7.	Parking Brake	ENGAGED	
8.	Aircraft Evacuation	carry out immediately	
Consider use of ditching eme		ency exit to escape in case pilot	

or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind di-

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION **EXTECNAM** P2006T - Aircraft Flight Manual Page SSMP3-50

8.2 ENGINE FIRE DURING TAKEOFF RUN					
	BEFORE ROTATION: ABORT TAKE OFF				
1.	Throttle Lever	BOTH IDLE			
2.	Rudder	Keep heading control			
3.	Brakes	As required			
	With aircraft un	nder control			
4.	Fuel Selector	BOTH OFF			
5.	Ignitions	ALL OFF			
6.	LH and RH AUX FIELD switch	BOTH OFF			
7.	Electrical fuel pump	BOTH OFF			
8.	Cabin heat and defrost	OFF			
9.	MASTER SWITCH	OFF			
10.	Parking Brake	ENGAGED			
11.	Aircraft Evacuation	carry out immediately			

11. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

IF THE DECISION IS TAKEN TO CONTINUE THE TAKEOFF:

A take-off abort should always be preferred if a safe stop can be performed on ground.

A suggested "GO-NO-GO" criteria is: abort take-off until LG is still down and locked.

Once airborne accelerate to Blue Line Speed (V_{YSE}) before commanding LG retraction.

Take-off planning should take into account that high density altitude and aircraft mass may result in OEI negative climb rate.

*V*_{YSE} with flap up shall be flown in order to achieve best possible rate of climb after landing gear retraction and engine feathering.

1.	Operating engine Throttle Lever	FULL POWER
2.	Operating engine Propeller Lever	FULL FORWARD
3.	Heading	Keep control using rudder and ailerons
4.	Attitude	Reduce as appropriate to keep airspeed over 62 KIAS
5.	Fire affected engine Propeller Lever	FEATHER
6.	Landing gear control lever	UP
7.	Airspeed	V _{XSE} /V _{YSE} as required
8.	Flaps	0•
	-	

SMOKE AND FIRE OCCURRENCE

COSTRUZIONARERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-51

At safe altitude

- 9. LH and RH AUX FIELD switch
- 10. Cabin heat and defrost
- 11. Fire affected engine Fuel Selector
- 12. Fire affected engine Ignitions
- Fire affected engine Electrical fuel pump 13.
- 14. Fire affected engine FIELD

BOTH OFF BOTH OFF Confirm and OFF Confirm and BOTH OFF Confirm and OFF

15. Land as soon as possible applying one engine inoperative landing procedure. See Para. 6.6

OFF

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

BOTH OFF

BOTH OFF

over 62 KIAS

OFF

BOTH OFF

BOTH IDLE

ALL OFF

BOTH OFF

ENGAGED

carry out immediately

Confirm and OFF

Confirm and BOTH OFF

Confirm and FEATHER

Confirm and FULL FORWARD

Keep control using rudder and ailerons

Adjust as appropriate to keep airspeed

OFF

OFF

OFF

OPEN

COSTRUZIONI A ERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-52

8.3 ENGINE FIRE IN FLIGHT

- 1. Cabin heat and defrost
- 2. LH and RH AUX FIELD switch
- 3. Autopilot
- 4. <u>Fire affected engine</u> Fuel Selector
- 5. <u>Fire affected engine</u> Ignition
- 6. <u>Fire affected engine</u> Throttle Lever
- 7. <u>Fire affected engine</u> Propeller Lever
- 8. <u>Fire affected engine</u> Electrical fuel pump
- 9. Heading
- 10. Attitude
- 11. <u>Fire affected engine</u> Field
- 12. Cabin ventilation
- **13. Land as soon as possible** applying *one engine inoperative landing* procedure. See Para. 6.6

8.4 ELECTRICAL SMOKE IN CABIN ON THE GROUND 1. MASTER SWITCH *OFF*

- 2. Cabin heat and defrost
- 3. LH and RH AUX FIELD switch
- 4. Throttle Lever
- 5. Ignitions
- 6. Fuel Selector
- 7. Parking Brake
- 8. Aircraft Evacuation

Consider use of ditching emergency exit to escape in case pilot or passenger doors are blocked, watch for engine hot parts, fuel, hydraulic fluid or oil spills. Leave aircraft in upwind direction.

COSTRUZIONARROMAUTICHE P2006T - Aircraft Flight Manual Page SSMP3-53

1	Cabin ventilation	OPEN
1. ว		ON EN
2.	Emergency light	
3.	Standby attitude indicator switch	ON
4.	Gain VMC conditions as soon as possible	

A tripped circuit breaker should not be reset.

If smoke persists, shed electrical supply in order to isolate faulty source by:

- 6. FIELD LH and RH
- 7. LH and RH AUX FIELD switch
- 8. AVIONICS LH and RH
- 9. CROSS BUS LH and RH

A fully charged battery can supply electrical power for at least 30 minutes.

OFF

OFF

BOTH OFF

BOTH OFF

If faulty source is found:

10. It may be possible to restore non faulty power sources (one at a time)

If smoke persists:

Before total electrical system shutdown consider gaining VMC condition, at night set personal emergency light on.

WARNING

Only emergency light and emergency ADI will be electrically powered.

All radio COM and NAV, Landing Gear lever (normal mode) and indication lights, electrical trims and flaps will be unserviceable.

11. MASTER SWITCH

OFF

12. Land as soon as possible

Section 3 – Emergency procedures SMOKE AND FIRE OCCURRENCE

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Ed.4, Rev.0

Supplement G23: pages replacement instructions

SECTION 4 - NORMAL PROCEDURES

Apply following pages replacement procedure:

Supplement G23 - NORMAL PROCEDURES page		Supplement G19 Section 4 page
SSMP4 – 24 thru 25	REPLACE	Page S4 – 26 thru 27 of Supplement G19, Section 4

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Ed.4, Rev.0

COSTRUZIONI AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP4-24

3.10 CRUISE

1 LH and RH Propeller Lever

SET to 1900-2250 RPM

Throttles MAP decrease should be made before propeller speed reduction below 2200 RPM, as, contrariwise, Propeller Lever increase RPM should be set before engine Throttle Levers are advanced.

2 Engine parameters check (LH and RH)

• Oil temperature:	90° - 110 ° C
	(or 50° - 130° C, if MOD2006/002 is applied)
• CHT / CT:	50° - 135° / 50° - 120 °C
• Oil pressure:	2 - 5 bar.

• Fuel pressure: 2.2 - 5.8 psi

*2.2 – 7.26 psi (0.15 – 0.50 bar)

*applicable for fuel pump part no.893110 and no.893114

3 Carburettor heat as needed (see also instructions addressed on Section 3

Deselect and do not use Auto Pilot if possible icing condition area is inadvertently entered.

4 Fuel balance and crossfeed

check as necessary

NOTE

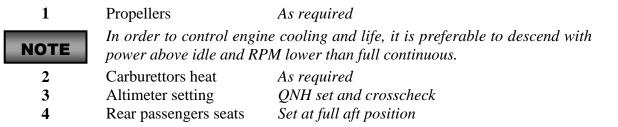
To evaporate possibly accumulated condensation water, once per flight day (for approximately 5 minutes) 100° C (212° F) oil temperature must be reached.

3.10.1 CONVERTER BOX TURN ON

- 1 LH and RH AUX FIELD
- 2 Converter Box
- 3 Mission systems

ON Check enabled (no fail lamps) Use as required

3.10.2 CONVERTER BOX TURN OFF


- 1 Mission systems
- 2 LH and RH AUX FIELD
- 3 Green lamps on switch panel

Shut down as necessary OFF Check OFF COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual

3.11 **TURBULENT AIR OPERATION**

In keeping with good operating practice used in all aircraft, it is recommended that when turbulent air is encountered or expected, the airspeed be reduced to maneuvering speed to reduce the structural loads caused by gusts and to allow for inadvertent speed build-ups, which may occur as a result of the turbulence or of distractions caused by the conditions.

3.12 **DESCENT AND APPROACH**

3.13 **BEFORE LANDING**

- 1 Rear passengers seats
- LH and RH Electrical Fuel pump 2
- On downwind leg: 3

Seats set at full aft and lower position BOTH ON

MTOW 1180kg	MTOW 1230 kg	Fl
$V_{FE}=119KIAS$	V _{FE} =122KIAS	

- 4 Speed below applicable VLO/VLE
- 5 Carburettors heat
- LH and RH Propeller Lever 6
- 7 On final leg: speed below 93 KIAS
- Final Approach Speed 8
- 9 Landing and taxi light
- 10 Touchdown speed

laps T/O

Landing gear control knob - DOWN -Check green lights ON CHECK OFF FULL FORWARD Flaps FULL

MTOW 1180kg	MTOW 1230 kg
$V_{APP} = 70KIAS$	$V_{APP}=71KIAS$

ON 65 KIAS Supplement G23: pages replacement instructions

SECTION 5 - PERFORMANCE

Apply following instruction:

See Basic AFM - Section 5

NOTE

Usually, the Special Mission Platform P2006T is also equipped with holes in the cabin and/or tailcone, ready for third parties sensor's integration. While the Tecnam intent is to offer a platform ready for sensors' integration, it is end-user responsibility to receive the approval from authority for each equipment installation, including the supplement of Section 5, should the equipment affect it (i.e. protruding cameras).

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

Supplement G23: pages replacement instructions

SECTION 6 - WEIGHT AND BALANCE

Apply following instruction:

See Basic AFM - Section 6

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

Supplement G23: pages replacement instructions

SECTION 7 – AIRFRAME AND SYSTEMS DESCRIPTION

Supplement G23 - AIRFRAME AND SYSTEMS DESCRIPTION page		Supplement G19 Section 7 page
SSMP7 – 39 thru 46	REPLACE	Page S7 – 39 thru 42 of Supplement G19, Section 7

Apply following pages replacement procedure:

INTENTIONALLY LEFT BLANK

Section 9 - Supplements

COSTRUZIONA AERONAUTICHE P2006T - Aircraft Flight Manual Page SSMP7-39

19. ELECTRICAL SYSTEMS

Primary DC power is provided by two engine-driven alternators which, during normal operations, operate in parallel.

Each alternator is rated at 14,2-14,8 VDC, 70 Amp, and it is fitted with an external voltage regulator, which acts to maintain a constant output voltage, and with an automatic overvoltage device protecting the circuits and the electric components from an excessive voltage caused by alternator failures.

The power rating of the each alternator is such that if one alternator fails the other one can still supply the airplane equipment to maintain flight safety.

Secondary DC power is provided by a battery (lead type - Gill Teledyne G35, 12 V, 23-Ah in 1h run time) and an external DC power source can be connected to the aircraft DC distribution system.

On the instruments panel, right side, it is installed a voltmeter/ammeter. The ammeter section can indicate the current supplied by either left or right alternator switching a dedicated selector.

There are five different busses (make reference to Figure 11):

- Battery bus
- LH Alternator bus
- RH Alternator bus
- LH Avionic bus
- RH Avionic bus

The distribution system operates as a single bus with power being supplied by the battery and both alternator but it is possible to separate the left busses from the right busses when required by means of the Cross Bus switches.

All electrical loads are divided among the five busses on the basis of their importance and required power: equipment with duplicate functions are connected to separate busses.

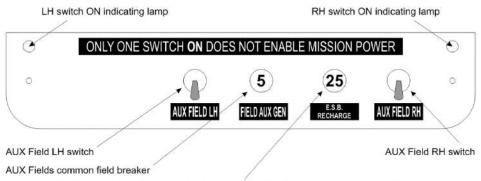
The Battery bus, which supplies the most important loads, is energized from three sources: the battery and both alternator. This allows the bus for remaining active also in case of two independent faults in the supply paths.

KOTECNAM P2006T - Aircraft Flight Manual

When both generators are correctly operating and all above mentioned switches are in ON position, all the busses are connected to the generators.

The ignition switches, two for each engine and grouped on the over head panel, are instead independent from the airplane electrical system (generation and distribution); they only control and open the engine electrical circuit.

If ignition switches are turned ON, a propeller movement can cause the engine starting with consequent hazard for people nearby.


19.1 MISSION POWER CONTROL

When the airplane embodies the design change "Power supply from built-in generators", the Rotax engine built-in generators are enabled in order to supply power to two available bus bars.

Each built-in generator is activated by means of a switch (LH and RH AUX FIELD) located on the LH breakers rack where are located also the breakers related to the auxiliary power generation system.

The light (switch built-in light) indicates that the electrical power is being generated.

The below figure presents the control panel for the built-in generators which in turn activate the converter box:

Emergency Starting Battery recharge breaker (not related with mission power management)

Switches panels

Next paragraph describes the converter and connector box installed in the P2006T baggage compartment floor. This box allows the operator to have a source of 28Volt/40Amp electrical power for different mission equipment.

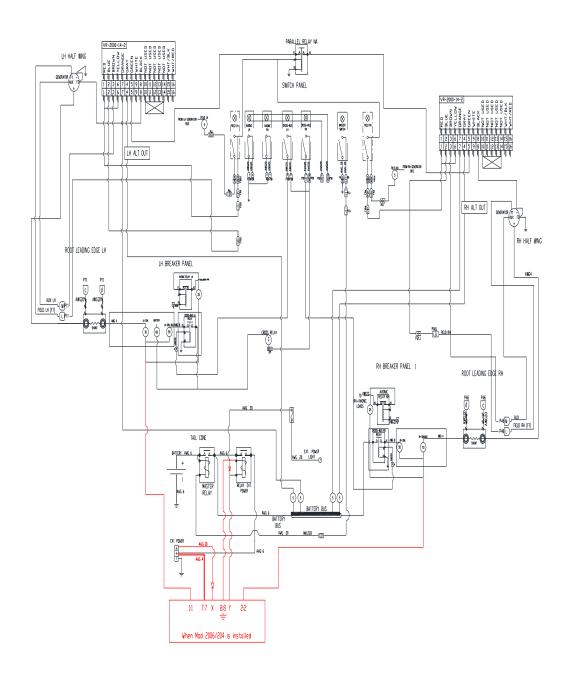
GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

COSTRUZIONA AERONAUTICHE P2006T - AIRCRAft Flight Manual Page SSMP7-43

19.1.1 CONVERTER BOX

The following points illustrate how the converter box works:

- 1. A closed, light alloy made box incorporates 4x converters Ameri-King AK-550-12, each one capable of 12Amp/28VDC output using a 14VDC input;
- 2. Each converter is fed by one different power generation:
 - 20Amp coming directly from the LH aux generator bus;
 - 20Amp coming directly from the RH aux generator bus;
 - 30Amp coming from the LH external alternator bus;
 - 30Amp coming from the RH external alternator bus;
- 3. Each converter is protected with circuit breakers on the INPUT and OUT-PUT sides;
- 4. The 30Amp current coming from the LH and RH external alternators is the amount of power surplus available due to the 2006/202 design change;
- 5. The same switches shown in the MOD2006/046 and reported in the figure above enable the relays that feed the converters;
- 6. Four relays enable the external power to feed also the converter box for ground test purposes, when external socket is connected;
- 7. A connector box allows the end user to have a maximum current of 40Amp at 28VDC available (1120W).



When using the ground power unit to test on-ground the mission equipment, remember that:

- 14VDC GPU only can be used, as done on standard P2006T.
- the minimum GPU capacity to properly feed mission equipment should be at least 150Amp @14VDC
- The FIELD AUX switches needs to be "ON" to test converter box connected equipment, "OFF" to test the aircraft avionics

NOTE

When connecting mission equipment to the system please note tha the amount of current provided depends on engine rpm setting. The maximum electrical power is available from 1.900rpm on. In the following figures the new Electrical system schematic is reported.

Electrical system schematic (Page 1)

GARMIN G950 IFDS – SMP FOR DIGITAL CONFIGURATION

P2006T - Aircraft Flight Manual

COSTRUZIONI AERONAUTICHE

Page SSMP7-45

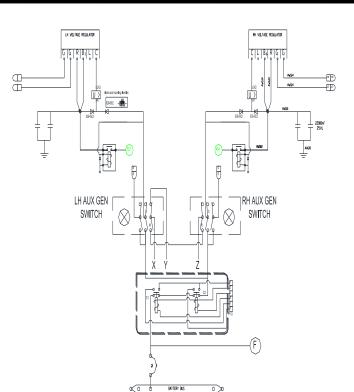
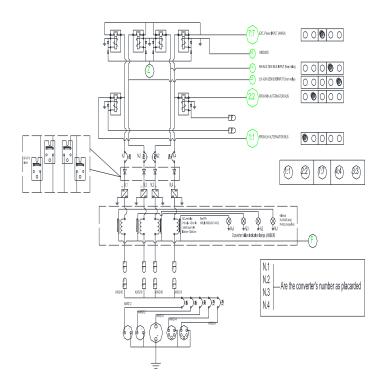



Figure 25 – Electrical system schematic (Page 2)

Electrical system schematic (Page 3)

Ed.4, Rev.0

P2006T - Aircraft Flight Manual

Page SSMP7-46

INTENTIONALLY LEFT BLANK

Supplement G23: pages replacement instructions

SECTION 8 – GROUND HANDLING & SERVICE

Apply following instruction:

See Basic AFM - Section 8

Ed.4, Rev.0

INTENTIONALLY LEFT BLANK

Ed.4, Rev.0

Section 9 - Supplements

SUPPLEMENT NO. G24

TABI-1800 SENSOR

RECORD OF REVISIONS

Kev	Revised	Description of Revision	Tecnam Approval			EASA Approval Or Under DOA	
	page		DO	OoA	HDO	Privileges	
0	-	First issue	A. Sabino	D. Ronca	M. Oliva	Approved under the authority of DOA ref. EASA.21J.335 MOD2006/363.190620	
-	-	-	-	-	-	-	

LOEP

Pages	Revision
G24 – 1 thru 10	<i>Rev.</i> 0

INTRODUCTION

This section contains supplemental information to operate, in a safe and efficient manner, the aircraft when equipped with TABI-1800 sensor.

The information contained herein supplements or supersedes the basic Aircraft Flight Manual.

It is the owner's/operator's responsibility to replace the mentioned pages in the AFM in accordance with the instructions herein addressed section by section.

SECTION 1 GENERAL

This modification allows to connect the mission system (TABI-1800 sensor suite and related LRUs) to the dedicated mission power system, when MOD2006/204 modification is implemented. This design change MOD2006/204 must be implemented in the aircraft prior to carry out the TABI-1800 installation.

MOD2006/204 is explained in further detail in the following pages to show the main differences between a P2006T aircraft without and with this MOD2006/204 modification implemented.

The standard P2006T (without MOD2006/204) and all its systems operate with 14V tension, which is made available via 2 x 40A alternators. The internal Rotax 912S (engines equipping the aircraft) are normally not activated or they only feed the engine starting battery re-charge. P2006T, when incorporating MOD2006/204, includes the following main differences:

- a) External alternators are 2 x 70A instead of 2 x 40A, still operating with 14 VDC tension output.
- b) Internal generators, 2 x 20A at 14V DC are enabled.
- c) Given that the aircraft systems and avionics still needs 2 x 40 A, there is an overall power surplus of 2 x 30A + 2 x 20A at 14V or 100A at 14V DC in total.
- d) The surplus power is directed to a converter box, shown in the next picture and installed inside the baggage compartment, whose role is to convert the 4 separate inputs from 14V DC to 28V DC, regulate it and make it available for mission purposes.
- e) The converter box also converts power coming from 14V DC Ground power unit for mission system ground check.
- f) The converter box features 4x KGS RH28 converters having up to 90% conversion efficiency.
- g) Even considering 80% of conversion efficiency, the total power available for mission equipment is:

40Amp @ 28VDC

- h) Peak power can be sustained by converters as well as by all protection CB, and the entire system is capable to work with TABI-1800.
- i) Converter box also features 4 lamps, each one dedicated to a converter and indicating its failure.

NOTE: one or more lamp illuminating could also indicate that the corresponding converter is delivering a power of less than 4Amp, thus in case of very low power consumption, one or more lamp could remain illuminated

j) Internal relays are excited by the mission system switches, which is the only control for the pilot to start the mission power. If one or both MAIN FIELD (alternators) does not work, or it is in OFF position, the mission power is automatically cut off as safety provision (i.e. in case of OEI conditions).

SECTION 2 LIMITATIONS

During single engine operations:

- TABI-1800 sensor must be deactivated;
- LH and RH AUX FIELD (mission power) switches must be kept BOTH OFF.

TABI-1800 sensor must be used in accordance to the applicable operation manual, PN 360036-02.

SECTION 3 EMERGENCY PROCEDURES

No additional emergency procedure is imposed by this installation since mission system power is automatically cut off as safety provision in case of any system failure.

SECTION 4 NORMAL PROCEDURES

Failure indicating lamps

If main alternators are properly generating, and AUX FIELD (mission power) switches are BOTH ON, the power flows inside the converters and then, on a common bus, a 28V power is made available via multiple connectors. Each output of converters is connected to four coils (one for each converter) internally provided by reed (magnetic normally open switch). The reed are therefore normally closed when the converter works properly, while in case of failure of converter, the reed change its state and the lamp connected to it turns on. The lamps (one for each converter), give information about the state of the converters.

In case there is a very low power consumption from the mission system (i.e. 10Amp), every converter manages only 2,5Amp and this low current could not be able to generate a magnetic field sufficient to turn the failure lamp OFF. Therefore, in case of very low power consumption, one or more failure indicating lamp could remain illuminated.

The malfunction of one or more converters does not involve the mission abort, if the remaining converters can sustain the request of the load. Each of the 4 converters can autonomously sustain 10A/28VDC maximum load. As an example, if the mission system demand is for 20 A, only 2 converters can feed it properly. In case of engine or alternator failure, the converter box power is automatically cut off, overvoltage protections are provided.

ON GROUND OPERATIONS WITH 12-14 VDC GPU CONNECTED

In order to check mission system works properly follow the next steps:

1) Verify Master is OFF

K TECNAM

- 2) Verify BOTH FIELD (LH and RH) are OFF
- 3) Verify BOTH CROSS BUS (LH and RH) are OFF
- 4) Verify BOTH AVIONIC (LH and RH) are OFF
- 5) Verify BOTH AUX FIELD (LH and RH) are OFF
- 6) Verify that GPU is, at least, able to provide 100A at 14 VDC or an adequate power once it is converted to the sensor needs

Never use a 28 VDC GPU on P2006T airplane

- 7) Plug in the 14V GPU to the external power socket
- 8) The aircraft avionics should start (NOTE: In this condition, aircraft battery is not recharged by GPU)
- 9) Switch AUX FIELD RH ON
- 10) Switch AUX FIELD LH ON
- 11) Aircraft avionics should power OFF and the converter box is now ready to feed mission system for ground checks (NOTE: In this condition, the converter failure indicating lamps are not powered)
- 12) Perform additional verification according to the following table:

	WITH G	PU CONNEC	TED TO EXTER	NAL POWER	R SOCKET	
if you want to				you need to operate the following switches		
Test Aircraft Avionics	Test Mission equip. only	Charge a/c Battery	Test converter Failure lamps	MASTER	CROSS BUS (LH, RH or BOTH)	AUX LH and RH
~	X	X	X	OFF	OFF	OFF
1	X	1	X	ON	OFF	OFF
X	1	X	X	OFF	OFF	ON
1	1	1	1	ON (note1)	ON	ON

NOTE1: To avoid converter box relays tripping, the following sequence is needed to test the converter failure indicating lamps:

- 1) AUX RH switch ON
- 2) AUX LH switch ON
- 3) BOTH CROSS BUS ON
- 4) MASTER ON

The reverse procedure can be used to stop the ground check.

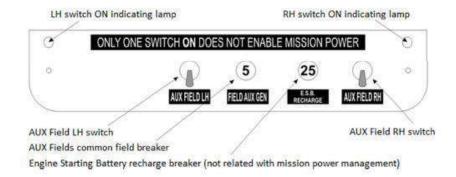
OPERATIONS DURING FLIGHT (WITH ENGINES RUNNING)

With engines running (in flight or ground) the mission power system works only if the MASTER is ON, BOTH FIELD LH and RH are ON and both main alternators are correctly generating power. If these conditions are satisfied, the mission power is activated through the "AUX LH and AUX RH" switches.

Start mission power in flight

TECNAM

- 1) Verify that MASTER is ON
- 2) Verify that FIELD LH is ON and left alternator is generating power (no LH ALT FAIL on MFD)
- 3) Verify that FIELD RH is ON and left alternator is generating power (no RH ALT FAIL on MFD)
- 4) Recommended minimum RPM before mission power switches ON = 1500
- 5) AUX FIELD LH switch ON
- 6) AUX FIELD RH switch ON
- 7) Power start to flow into converter box. If the overall mission needed power is more than 25 A, all converter box lamps should de-illuminate.


NOTE

When operating mission equipment with a low power demand, it is likely that only one failure indicating lamp will de-illuminate or flashes. This happens because the current flow in the remaining failure lamps circuits is not sufficient to power the coils around the reed switches that open the line to the lamps.

To switch off mission power in flight (or with engines running)

- 1) Make sure the mission suite is switched OFF by the mission operator
- 2) AUX FIELD RH switch OFF
- 3) AUX FIELD LH switch OFF

Next figure shows the mission power control panel layout.

POST FLIGHT OPERATIONS

No change to procedures set forth in aircraft flight manual.

NOTE

It is suggested to power OFF mission power system (AUX LH and AUX RH BOTH OFF) when engines are still above 1500 RPM. Mission equipment should be switched OFF before the engine shut down. Keeping mission suite ON with engines at low rpm or in idle could cause drop of tension, mid-term damages to the converters and mission system shutdown

SECTION 5 PERFORMANCE

Refer to the basic AFM for loading procedures.

SECTION 6 WEIGHT AND BALANCE

Refer to the basic AFM.

SECTION 7 AIRFRAME AND SYSTEMS DESCRIPTION

Refer to the basic AFM, plus the following information. For a detailed description of the equipment operation, see the applicable operation manual, PN 360036-02.

ELECTRIC SYSTEM

TABI-1800 system's core components are shown in the picture below.

TABI-1800

Sensor Head Unit

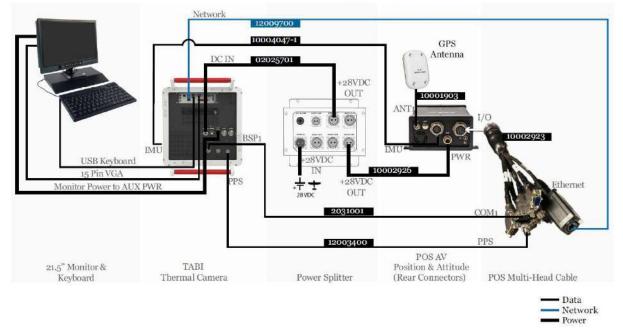
SHU features an integrated instrument control unit. All data recording, management, operator input and control functions, and power distribution occur in this enclosure.

POS AV

Position & Attitude Sensor

GPS receiver, integrated within its rack-mountable computer. Its GPS antenna is mounted on the roof of the aircraft.

Monitor & Keyboard


(Monitor may differ)

For operator's management of mission system. They must be properly stowed and secured during Take-Off and Landing

NOTE

Items in the aircraft that are not permanently secured (e.g. the keyboard) should have a secure location to hold them during take-off and landing.

The system's connection to the aircraft dedicated 28 VDC power supply and its architecture are shown in the figure below:

TABI-1800 Cabling Diagram

The maximum required power supply is:

- 11A for the TABI-1800 alone;
- 16A for the TABI-1800, POS AV and navigation system together.

NOTE

A laptop controller is often used with the integrated GPS/IMU system. This typically operates using 110 Volts AC. To obtain this from an aircraft which supplies +12 or +28 Volts DC entails additional equipment. One practical possibility is to provide a VDC to VAC Adaptor. Note that 28-110VDC converter is not part of the approved configuration and should be managed with separate approval process

SECTION 8 GROUND HANDLING & SERVICE

Refer to the basic AFM.